

Severn Fisheries Group

"Working in partnership for a sustainable future for the River Severn and its fisheries"

River Severn Net Limitation Order and Byelaws Consultation 2021

PROPOSAL FOR COLLECTIVE CONSENSUS ACTION

FROM THE SEVERN FISHERIES GROUP

A partnership approach

"Cooperation not Confrontation"

The Key to a Successful & Sustainable Future for the River Severn & its Tributaries

CONTENTS

The Proposal: its Rationale and Justifications	р З
Appendix 1 Lessons to be learned from the 'All Wales Salmon and Sea Trout Byelaws'	
	p 9
<i>Appendix 2 An Analysis And Review Of The Environment Agency Technical Case</i>	p 23
<i>Appendix 3 NWATFCC Short Analysis Of Environment Agency</i> <i>Technical Case Justification For Severn NLO & Byelaws</i>	P 33
Appendix 4 NWATFCC in-depth analysis of EA Severn NLO & Byelaw Consultation Technical case justification of stocks	p 35
Appendix 5 The Peculiarities Of The Severn	p 58
<i>Appendix 6 Collective Anglers' Response To River Severn Net Limitation Order and Byelaws Proposals 2021 : Respondent List</i>	p 59
Endnotes	р 70

THE PROPOSAL: ITS RATIONALE AND JUSTIFICATIONS

Proposal - We are proposing a moratorium for three years on any further byelaws until the current ongoing review of stock assessment has been completedⁱ and any necessary subsequent revisions of the assessment methodology and adjustments to Conservation Limits relating to the River Severn have taken place.

During this time anglers will work with the Environment Agency to deliver a 90% plus voluntary catch and release (C&R) rate for Salmon caught from June 16^{th.}

Our immediate next step will be to organise a meeting of angling clubs and salmon anglers with Agency officers to discuss the practical means of implementing the 90% plus C&R option across the catchment. This is a step we believe to be a vital part of the process and addresses the lack of any initiative by the Agency to actively scope the 90% plus C&R option in 2019 and again in the current consultation.

Justifications – The benefits of this proposal make it far more attractive as a fishery management option than compulsory 100% catch and release combined with method and tackle restrictionsⁱⁱ.

- The proposal follows the precautionary principle. Fewer salmon will be killed under this option than any otherⁱⁱⁱ.
- The proposal avoids the unintended consequences of the statutory option^{iv}. Statutory C&R and method restrictions will inevitably drive legitimate game anglers off the river^v. A game angling exodus will remove the Agency's gamefish-sensitive eyes and ears^{vi} and create a massive opportunity for increased poaching and subsequent salmon stock depletion^{vii}. We believe this mortality will be far above that associated with our option^{viii}.
- A cost benefit analysis shows that it will reduce the enforcement costs to the Agency while having greater benefits in terms of reducing exploitation^{ix}.
- It will provide an exciting opportunity to foster and strengthen partnership working between salmon anglers and the Agency, rather than increasing indifference or confrontation^x.
- It is the only proposal that removes the indirect discrimination against disabled and older anglers involved in method restrictions¹.
- It would remove the concern that the outcome of the byelaw process has been predetermined^{xi}, to 'align' the Severn with Wales^{xii}.
- It would maintain existing well being and mental health benefits² by allowing migratory fish anglers to continue to enjoy their sport and to access the vast majority of the fishery which can only be effectively fished with bait.^{xiii xiv}

¹ We await pre-approval DEFRA legal team confirmation that the EA has completed an Equality Impact Assessment of the different options in the byelaw consultation, as we have not yet seen ANY documentation. Indirect discrimination occurs when the introduction of a policy, criteria, or practice results in less favourable treatment to a group with protected characteristics as defined by the Equality Act 2010. In this case, only allowing spinning and fly fishing, which are the more active forms of angling, would result in less favourable treatment of those older or disabled anglers who are not capable of that level of activity, and can only fish with bait. Both age and disability are protected characteristics. Furthermore, failure to offer an exemption to any bait fishing ban to anglers with a disability would almost certainly amount to a failure to make reasonable adjustments. The only defence available to the Agency to the claim of indirect discrimination would be that the bait ban is a 'proportionate means of achieving a legitimate aim'. It is difficult to see how the level of salmon mortality involved (especially given C&R the mitigating measures available such as use of circle hooks) would balance the less favourable treatment and impact on individual wellbeing of removing salmon angling as a pursuit for a significant number of people. Whether or not there is any defence available to the Agency against a failure to make reasonable adjustment is a moot point. If an Equality Impact Assessment (EIA) had been carried out these issues would have been highlighted. For guidance on the use of EIAs to eliminate discrimination by public bodies see: The public sector equality duty and equality impact assessments, House of Commons Library, July 2020 https://commonslibrary.parliament.uk/research-briefings/sn06591/

² Health and wellbeing impact assessment completely missing from EA consultation documentation. Experience from Wales shows clearly that it cannot be dismissed as insignificant by any fair minded non-predetermined official – see 550-respondent evidence in PAAS survey at Appendix 1

Background

This proposal is an initiative from the angling community to end unnecessary conflict in England, following that initiated in Wales as a result of a restrictive byelaw approach^{xv}, ^{xvi}. Anglers fear the repetition of this alienating pattern in England now.^{xvii}

Salmon anglers have worked constructively with the Environment Agency over many years. From 2012 to 2016 we achieved an increase in voluntary catch and release from 59% to 78%. This was driven by angler action and initiative including a competition for the largest salmon caught and released sponsored by the Shakespeare tackle company. In 2016 the Salmon stock was assessed as 'Probably not at risk'³. Agency projections said that the river was predicted to be 'Probably not at risk' in 2020, 2021 and 2022. This assessment continued until early 2019. It is clear that until the dry summer in 2018 and the emergence of the ramifications from the storms of 2016 on returning numbers of adults in 2019, the long term trend in salmon catches was trend stationary with a statistically insignificant slope as was the egg deposition series^{xviii}. The upturn of 35% in provisional rod catch in 2020⁴ is indicative that the previous 2 years were aberrant.

In 2019 the agency carried out a drastic and one-sided review of their desk-based stock assessment changing the approach of fecundity estimation from one specific to the Severn to one based on an old and standard Pope formula employed nationally, though with no verification as to its appropriateness for the Severn. At the stroke of a pen this manufactured a perception of crisis which didn't actually exist by reducing the egg deposition estimates by 50% or more^{xix} which was used to justify the emergency byelaws.

This alone seems to need a serious investigation for quality assurance before Defra sends the byelaw to the Minister for approval.^{xx}

The resulting Agency's narrative did not ring true with the overwhelming majority of the anglers on the river, nor did it fit with the picture painted by the rod catch which is the only Severn based empirical data still in use in the Agency's Severn stock assessment. That data suggests a stable stock^{xxi} and the adjusted rod catch indexed to 2010 effort levels indicates that there would have been a stable catch over the following years.

³ Uncontested by the EA, but not even mentioned in the present byelaw consultation- a clear failure of quality assurance for neutral briefing?

⁴ Surprisingly there was no reference to the most recent catch data in the EA Technical Case though an uplift in catches was mentioned in the UK NASCO submission.

Quality Assurance failures⁵:

The 2019 changes to the stock assessment are cause for great concern to the angling community because they suggest a fatally compromised process:

- The review started from the assumption that the Severn stock assessment must be wrong because it didn't match the picture of decline on the Wye and Usk. This reversed the normal process where the investigation should come first, and the conclusions last.^{xxii}
- The only changes that were made had a negative impact on the stock assessment.^{xxiii}
- Reference to Severn specific data on size and sex based on a decade of painstaking empirical work from agency fisheries scientists were removed.^{xxiv}
- Reference to Severn specific data on fecundity (the number of eggs per kilo produced by a female) was also removed. This has been replaced by national fecundity estimates based on lb weigh values raising the following concerns. These are: when and how they are reviewed and whether they apply to all rivers; that these values have remained unchanged over many 10 year assessment cycles and have been replaced with an old weight equation that produces fecundity estimates well below the norm found in most UK and international studies.⁶
- There has been no review of any factors that might have improved the stock assessment.⁷
- Of special concern is the fact the Agency chose not to review the exploitation rate (the percentage of the run caught by anglers) and continued to apply one derived from the river Dee a system a third of the size of the Severn with twice as many anglers.⁸ This factor is vital as it is the multiplier by which the agency derive a total number of fish running the river. Sticking to this inappropriately high exploitation rate underestimates the number of salmon in the river and has produced statistical projections which clash with the EA's own fish counter data and the internal assessment model.^{xxv}
- Sticking to this inappropriately high exploitation rate underestimates the number of salmon in the river and produces statistical projections which clash with the EA's own fish counter data and the internal logic of the Assessment Model^{xxvi}
- Also of concern is the fact that there was no attempt to grasp the specific impact of
 previous regulatory action on catch, effort and the exploitation rate, and hence on the
 stock assessment. This runs counter to the methodology previously employed by the
 agency when reviewing the impact of the Spring byelaws. In that case a fall in rod
 catch of 58% on the Severn from 1994-8 to 2002-6 was said not to represent a
 reduced stock as effort had fallen proportionately.
- The Severn saw the largest drop in effort of any river following the 1998 spring byelaws. This is because the ban on bait before June 16th effectively closed most of the fishery during the peak months of the MSW salmon run. ^{xxvii}To transport an exploitation rate from a river where methods are far more interchangeable is an illegitimate exercise.^{xxviii} These worrying anomalies explain why anglers are asking for a thorough review of the Stock assessment^{xxix} and a moratorium on further action until that is carried out.

⁵ Has EA evidence directorate approved the consultation design and wording, to ensure regional is not promulgating substandard or leading material without national oversight? Will Defra be commissioning an independent quality assessment before forwarding to the Minister for approval? Without this, there is ZERO evidence that the byelaw as presently constructed is formally safe. Community assent and compliance with it will be substantially less likely. Has EA chief scientist actually signed off this byelaw proposal? If not, what confidence can Defra have in EA process being safe?

⁶ See Appendix 3 for summary and information already submitted by Mike Ashwin to EA which is presently uncontested and still awaiting EFG consideration.

⁷ English Fisheries Group review of this matter is surprisingly only planned to begin after the consultation end date for the Severn. This appears a cart before the horse approach. It has increased angler alienation and rational suspicion.

⁸ See Mike Ashwin's detailed evidence, not yet processed by the Deputy Director of Fisheries or Directorate for Evidence.

- **Predetermination:** We still await confirmation from EA head of legal as to whether the current process is considered formally safe in specific terms of being free of the taint of predetermination, regarding :-
 - **1.** nonappearance of options two and three in the initial byelaw paperwork for presentation to Severn angling club representatives (16/02/2020).
 - **2.** Reported comment by a key participant in the byelaw formation process, substantively unaddressed in reply from Kay Champion: "*I'm telling you that I am going to stop the taking of Salmon*"^{xxx}
- Consideration of apparently glaring departure from Cabinet Office Consultation Principles has been ignored at high level.^{xxxi}
- There is a distinct lack of evidence that these proposals will make any difference to the numbers of salmon in the River Severn and its tributaries.^{xxxii}
- Nowhere in the byelaw consultation does it mention any evidence of sea trout numbers/technical information even though the byelaw stipulates that it is for sea trout.⁹
- Were there any evidence that Mandatory C&R makes any difference to future stocks over and above current Voluntary Levels then the argument might be slightly more compelling, but the reality is that there is a distinct lack of supporting evidence.
- Furthermore, the neighbouring cross border River Wye has had similar byelaws to those proposed for the Severn since 2012 with the aim of helping salmon stocks recover. During that time stocks have now declined from around 1000 rod caught salmon in 2012 to an all-time low of 243 in 2019, and that in spite of the Wye & Usk Foundation having a total expenditure in excess of £11,180,000 during the same time frame.
- Before the two extreme events below, the Severn was classified Probably Not at Risk. Given that catches have increased by 30% in 2020, it would be **premature to invoke the precautionary principle** to introduce a 10 year restrictive byelaw with potential significant social, discriminatory, health and welfare and rural economic effects when the evidence for systemic decline is so weak, and the current status as of 2020 is indicative of an emergent natural recovery in stocks.
- The fact that the only evidence that has prompted calls for a new byelaw is the consequence of two extreme weather events -loss of eggs and juveniles through Storm Desmond in winter 2015/16 impacting on 2017 -19 1 SW and MSW catches, and a dry summer in 2018 that depressed catches. Prior to those years, the evidence was that the Severn was probably not at risk. Indeed, the current revised egg deposition estimates presented in the Technical Document and its Annexes indicate that the Severn attained or exceeded its conservation limit in several years out of the last 10 given there will be an error distribution around each of the annual egg estimates themselves. This is not indicative of a river in difficulty. We have no confidence in a flawed stock assessment process having been reviewed 3 times in 2 years and currently in a 3-year review process which is indicative of awareness of by Defra, EA and Cefas of failings in the system. Hence the SFG presents an option consistent with the current circumstances, the long run trends in salmon stock and in the interests of furthering good angling practice and conservation.

⁹ This shocking major lacuna in byelaw paperwork and consultation framing will result in an escalating complaint if not remedied before any byelaw implementation.

There is manifold emerging evidence that the 100% C&R for salmon in Wales has been anything but successful except in its legislative introduction. The Angling Trust validates our assessment.^{xxxiii} We believe blanket coverage of all rivers in Wales is unselective, unwise, poor river management practice, and will ultimately prove detrimental to the future of salmon and seatrout stock and angling in Wales. The case for extending the elements of the Welsh emergency bye laws for the Hafren to the English Severn that are necessary to ensure conformability with its restrictions other Welsh rivers is unjustifiable on an evidence basis regarding the health of the Severn and a matter for Wales only. Nor is administrative convenience a rational argument for replicating such legislation in England. Put bluntly, inappropriate decision making in Wales should not drive the management of the River Severn in England where the majority of angling effort takes place and concern for the health if its salmon stocks resides. Such is the nature and flexibility that Devolution affords.

The SFG Principles

- SFG is fully committed to securing a sustainable, long term future for the River Severn and its fisheries and is clear that working in partnership with other stakeholders, including the Environment Agency and Angling Trust, is the preferred pathway by which that goal can be achieved.
- SFG recognises that for partnership working to be successful it must be built on core values of mutual trust and respect, education and a desire to work collaboratively and must also be underpinned by reliable science and evidence in which all parties can have confidence. We share a common goal but understand that rebuilding relationships is likely to be required from all parties if that goal is to be realised.
- SFG recognises that we must focus on where we are going and not where we have been. The future well-being of the River Severn is our primary concern, and all parties must focus on how we can best work collaboratively rather than finding reasons for not doing so or prematurely terminating discussion.
- SFG is clear that a voluntary solution, in line with the NASCO decision making structure, is the best way for our shared goals to be achieved in the shortest possible time whilst at the same time, minimising negative impacts on our fisheries.

GOING FORWARD:

The SFG believes that a voluntary solution brings the following benefits:

• More salmon anglers remaining on the river where their presence discourages illegal activity and facilitates the reporting of poaching and pollution

• Benefits of angling to physical and mental wellbeing are maintained. The National Angling Strategy's explicit focus on wellbeing must not be undermined by ad hoc catchment restrictions based on insufficient science^{xxxiv}

• The development of a positive relationship between the EA and angling stakeholders encourages investment in our rivers and allows fisheries to thrive.

• It allows stakeholders to help the EA to deliver its statutory duties by unlocking the potential for voluntary contributions such as policing agreed enforcement and assisting with redd counts^{xxxv}, habitat improvement work etc.

Failure to learn from mistakes made elsewhere will only result in losses for all concerned: - the EA which in alienating stakeholders have deprived themselves of the partners needed to fulfil their statutory duties

- the angling organisations who face a loss of membership, loss of income & loss of amenities

- most importantly of all, the salmon who have been denied a collaborative approach which could have delivered so much more for habitat restoration, pollution prevention and FEB displacement

We feel that it is irresponsible of the Environment Agency not to be looking at the full consequences of this byelaw for the migratory fish full ecosystem health. No such details have been provided in the consultation written documents.

A SFG Constructive Collective Working Proposal

Our preferred option is that there should be a 3 year moratorium on changes to current arrangements which comprises statutory 100% C&R until June 16.

During the 3 year cycle a complete stock assessment review will be undertaken. There should be no changes in angling methods. Microbarb hooks would be promoted for worm fishing and circle hook use explored. As there is published peer review evidence that there is no significant difference in post C&R mortality between lure and bait and evidential ambiguity regarding advantages of single and barbless hook use^{xxxvi}, premature conclusions about mortality without a full literature search evidence base should be avoided and this period used for mutually respectful academic literature review.

During this period, the SFG would promote voluntary C&R with the collaborating Severn and national angling clubs with Severn fishing interests for the latter half of the season with the aim of attaining over 90% C&R from June 17th to the end of season..

Some specific forms that partnership working could take:

1. Measures to improve catch reporting and effort monitoring

- A campaign to encourage anglers to report their catches to the EA
- A catch reporting app
- An angler logbook system

2. Measures to improve information about timings and patterns of salmon runs

- A fish counter on the new Diglis pass (this is particularly important for assessing the total size of the run and the proportion that enters the main rod fishery after the season closes).
- Training of volunteers to carry out redd counts

3. Measures to protect stops and deter poaching

- A joint programme to train significant numbers of voluntary bailiffs
- Deployment of volunteer bailiffs in redd counting and poaching deterrence.

4. Measures to protect water quality and combat pollution

- Encouraging resumption of full incident reporting
- Known pollution vectors to be mutually explored

5. Code of Conduct

An angling code of conduct could be produced for every club explaining the correct methods to release salmon successfully and promoting 90%C&R.

This section is of necessity in outline only, as it is contingent on partnership working being reprioritised by the EA.

APPENDIX 1

Lessons to be learned from the 'All Wales Salmon and Sea Trout Byelaws'

SFG is clear that working in partnership with other stakeholders, including the Environment Agency and Angling Trust is the preferred, and perhaps only, pathway by which a sustainable, long term future for the River Severn and its fisheries can be secured. Previous conversations between SFG representatives and the AT have also made it clear that the AT is fully supportive of a voluntary solution whereby angling clubs and fisheries assume responsibility for the management, monitoring and enforcement of agreed regulations. We believe that better outcomes will be achieved through a sense of ownership which will inevitably lead to far greater acceptance and compliance, something that is absolutely vital when the EA's enforcement capabilities are so limited. Unfortunately this is the very antithesis of what has happened in Wales where a heavy handed, "top down", management approach has proved counterproductive.

A number of members of the SFG steering group have considerable experience of the mistakes that have been made in Wales where the development and introduction of the 'All Wales Salmon and Sea Trout Byelaws' took from Jul 2015 to January 2020, consumed an enormous amount of public funds, time, resources and effort and has caused enormous damage to the relationship between NRW and Angling Stakeholders. We had feared for some time that NRW would seek to influence any new byelaws for the Severn in order that the Upper Severn catchment within Wales would be neatly encompassed within the same regulations as the rest of Wales. The Technical Case Structure provides evidence to confirm our suspicions:

Page 49 Option 1 Disadvantages (Fishery) *5) "NRW are likely to seek to implement mandatory rod fishing measures in the upper Severn catchment which will be inconsistent".*

Page 51 Option 3 Disadvantages (Fishery) *3) "Consistent with rod fishery regulation recently introduced by NRW in Wales"*

SFG is quite clear that the heavy handed, "top down", management approach adopted by NRW in its introduction of the All Wales Byelaws is counterproductive and must be resisted at all costs. We are adamant that the approach has failed for the following reasons:

- A failure to heed and address the concerns raised by experienced angling stakeholders has led to a breakdown in the relationship between NRW and the very people needed to enable the regulator to fulfil its statutory duties.
- The breakdown in the relationship has led to a large number of angling organisations
 refusing to engage with NRW and attendance at many Local Fisheries Groups has been
 described as *"to say the least a bit sparse"*. Poorer outcomes are an inevitable
 consequence of failing to develop effective partnerships with those who have a vested
 interest in salmon and sea trout and the recovery and sustainability of the stock.
- Alienation of stakeholders has resulted in a number of angling organisations refusing to enforce the new regulations. NRW's woefully underfunded enforcement team is unable to compensate for that lack of support which is further exacerbated by a lack of compliance emanating from a lack of ownership. (See Section 2 "Lack of Enforcement" in the Byelaws Survey and Report at the end of this section)

• Both the lack of enforcement and withholding of information for a self-styled *"intelligence led organisation"* has inevitably led to an increase in poaching which ultimately cause significantly more damage than an angler taking an *"occasional fish for the pot"* with the consequence being a **net loss to fish stocks.** It is somewhat surprising that NRW's Principal Fisheries Advisor has not seen fit to feature the unintended impacts of the bylaws for appropriate discussion at the Wales Fisheries Forum.

Prince Albert Angling Society, a key member of the Severn Fisheries Group, was keen to verify the impacts of the byelaws that were being reported anecdotally by a number of reports. As a result the Society carried out a questionnaire survey of members who fish in Wales.

The general lack of both compliance and enforcement provide sufficient reason alone to question the wisdom of a legislative solution. However SFG has even greater concerns about the following unintended consequences:

- The negative impact on angling participation will lead to law abiding anglers being replaced by those who choose to operate outside of the law with a negative impact on fish stocks
- The negative impact on anglers' mental wellbeing when 70% of those in the survey report that they now enjoy their fishing less as a result of the byelaws

The methodology and full analysis of the 550 survey responses received is contained within the report which begins on the following page. There are some very telling quotes from ordinary, law abiding anglers contained within the survey. The EA must learn from NRW's mistakes and fully address those concerns if it really does want the best possible outcome for the River Severn.

What is the real impact on our fisheries?

It is more than 12 months since new byelaws to control salmon and sea trout fishing were introduced in Wales. There have been many reports from anglers that the byelaws are having a negative impact on both their enjoyment of time spent on the river and on the numbers of fish that they catch. We conducted an online survey of 550 anglers in order to try and establish the true picture.

John Eardley https://paas.co.uk/

*The Byelaws are not being policed

- Not a single angler in the survey was <u>approached by an NRW Enforcement</u> <u>Officer</u> whilst fishing in Wales during 2020¹⁰.
- Only 14% of anglers have been approached by an NRW Enforcement Officer at any point during the previous 5 years.
- 60% of anglers have never been approached by an NRW Enforcement Officer

*The Byelaws are having a negative effect on intelligence gathering

• <u>33.2 % of salmon & sea trout anglers</u> stated that as a result of the new byelaws they are now <u>less likely to pass on information</u> to the NRW Incident Hotline or Enforcement team

*Anglers are not adhering to rules which serve little purpose and make it increasingly difficult to catch fish

- <u>44.4%</u> of salmon & sea trout anglers admitted <u>breaking the barbless hook rule</u>
- <u>43%</u> of worm fishermen admitted <u>breaking the single worm rule</u>
- <u>40%</u> of anglers admitted using used treble hooks whilst spinning <u>despite such hooks</u> <u>being banned</u>

***Serious implications for fragile rural economies**

- <u>25%</u> of salmon & sea trout anglers have <u>given up their seasonal base in Wales</u> as a result of the byelaws with a further <u>25% considering doing likewise</u>
- <u>19.4%</u> of salmon & sea trout anglers stated that they <u>no longer choose to fish in</u> <u>Wales</u> as a result of the byelaws

*A detrimental effect on mental wellbeing

- <u>70.25%</u> of anglers <u>enjoy their fishing less</u> as a result of the byelaws
- <u>36.9%</u> of anglers <u>no longer fish at least one</u> of their regular water

¹⁰ We have the utmost respect for the woefully understaffed Enforcement Team and there is a plausible explanation for the lack of contact (albeit based on anecdotal evidence) in that "on the ground staff" recognise that <u>law abiding anglers pose a negligible threat to stocks</u> and direct their efforts to where the real threats lie.

1. Survey Details

We emailed a link to our membership which allowed them to access an online questionnaire (see Annex 1 Pages 8 -11) which once submitted allowed us to compile a database in order to analyse the results. We have copies of all the responses along with the full database should anyone doubt the validity of the responses.

We received a total of 550 responses in a 10 day period ending on 20th February:

- 544 were¹¹PAAS members, 3 identified as non-members & 3 did not submit a response to that question
- 93 of the respondents live and fish in Wales, 452 visit Wales in order to fish & 5 did not submit a response to that question
- 295 anglers fish for coarse fish, 315 fish for trout, 265 fish for sea trout & 270 fish for salmon. Most anglers indicated that they target more than one species

2. Lack of Enforcement

The responses make damning reading for an "*intelligence led*" organisation. However there should be no surprises given that ¹²NRW had already identified in 2015 that there was a <u>"Potential need to re-direct or increase fisheries enforcement resources to enforce any new regulation</u>". Instead a decision was made to restructure the 16.25 ¹³FTE Enforcement Officers into 10 teams reducing their capacity even further. With the alienation of stakeholders leading to many angling clubs being unwilling to police any of the new rules the writing was on the wall. The current situation is untenable.

- **0%** of anglers were approached by an NRW Enforcement Officer whilst fishing in Wales during 2020.
- 7% stated that it was 1-2 years since they had been approached by an NRW Enforcement Officer
- 7% stated that it was 3-5 years since they had been approached by an NRW Enforcement Officer
- 26%stated that it was more than 5 years since they had been approached by an NRW Enforcement Officer
- **60% (329 anglers!)** stated that they have <u>never</u> been approached by an NRW Enforcement Officer whilst fishing in Wales

Put another way <u>only 14% of anglers</u> have been approached by an NRW Enforcement Officer whilst fishing in Wales at any time during the <u>past 5 years!</u>

In addition <u>29% of anglers</u> stated that as a result of the new byelaws they are now <u>less likely to pass on</u> <u>information</u> to the NRW Incident Hotline or Enforcement team.

- ¹⁴ "We, Anglers are the gaurdians (sic) of the Rivers, we report Pollution and River Conditions, to you and our Club, as have the way you have Punished us for doing your Job for you, I will no longer, be assisting you in anyway, NRW."
- "Despite reporting poaching and pollution at the actual time of the event on the Dee and Vyrnwy (sic) I have never had a satisfactory response or seen any action taken against the perpetrators."
- o "We are guardians of the river. Unnecessary bylaws without enforcement is nonsensical"
- "The new byelaws and absence of enforcement officers is leaving river stocks wide open to illegal poaching."
- "Not as many anglers on the rivers, to report any incidents ie poaching, pollution and general activity on the rivers. Anglers police their own beats that they fish on, with these regulations it will become a poacher's paradise on some Welsh rivers, not enough 'eyes' to keep a watch on things."

¹² Natural Resources Wales

¹¹ Prince Albert Angling Society

¹³ Full Time Employment

¹⁴ All quotes in italics are from the 191 additional comments received

3. The devastating impact on Angling Tourism

Many visiting anglers like to have a seasonal base in Wales such as a caravan or cottage. As such anglers make a significant financial contribution to fragile rural economies throughout the fishing season.

- 99 of salmon & sea trout anglers indicated that currently, or up to the time of the byelaws being introduced, they had a seasonal base in Wales
- 25 anglers (25%) have given up their base as a result of the byelaws
- 25 anglers (25%) are considering giving up their base as a result of the byelaws
- "I have a touring caravan and I was a regular visitor to Wales, however I am less likely now to travel for recretional (sic) angling as a result of the new rules."
- "I was the last of six fisherman friends to sell our caravan at the end of last season .this was a huge part of our lives"
- "I no longer fish in Wales for migratory fish."
- "I am seriously looking for alternate water outside wales which is a shame as I started fishing in wales over 60 years ago"
- "New bye laws make Wales a far less attractive fishing destination"

4. We also asked anglers how well they felt that NRW are looking after rivers and fisheries

- "NRW have alienated angling stakeholders. They are dictatorial in their approach and their actions threaten the very future of Game Angling in Wales. They have closed hatcheries and cut backs mean that there is low morale amongst 'on the ground staff'."
- "I believe that N.R.W. as the Regulators of our Welsh Rivers are totally incompetent and not fit for purpose."

- "My experience of NRW have always been negative. I believe the by laws (sic) were brought in to mitigate their inadequate handling of the loss of salmon and seatrout, so that they did not need to spend any money on the problem."
- "I half wish they would go back to the old regional rod licence so I could avoid my money going to NRW"

The 307 anglers who indicated that they fish for salmon and/or sea trout are the group most affected by the bylaws.

It is no surprise that many have reacted in the way in which they have. For example the <u>33.2 % of salmon</u> <u>& sea trout anglers</u> who stated that as a result of the new byelaws they are now <u>less likely to pass on</u> <u>information</u> to the NRW Incident Hotline or Enforcement team is higher than the overall sample figure.

5. Anglers views on the Mandatory C&R¹⁵ element of the Byelaws

Mandatory C&R is a contentious issue. Many anglers willingly practice Voluntary C&R and rarely, if ever, take a fish. However when C&R becomes mandatory many of those anglers stop fishing altogether.

- More than **75%** of anglers are opposed to the introduction of Mandatory C&R on all rivers in Wales
- However 60.1% support Voluntary C & R¹⁶ where appropriate on a river by river basis
- "Catch and release is not the solution to declining Salmon and sea trout catches"
- "I believe that the imposition of mandatory catch and release could force me to release an injured fish where to do so would be cruel. The alternative would be to make me a criminal which I do not wish to risk"
- "The people that choose to kill fish whether legally or not will continue to kill fish regardless of the byelaws. The byelaws simply penalise those that want to stay within the law"

6. We asked about the impact of the Byelaws on their angling effort in Wales during 2020, <u>irrespective of the impact of Covid 19</u>

There are serious implications here for future stock assessments. When 60% of anglers are either fishing less, or no longer choose to fish in Wales at all, how can angler catch returns provide any valid indicator of how many salmon or sea trout are actually present in rivers in Wales?

- 123 anglers (40.6%) stated that they had fished less often as a result of the byelaws
- **59 anglers (19.4%)** stated that they **no longer choose to fish in Wales** as a result of the byelaws
- "because of the new byelaws i did not purchase a migratory fish licence in 2020"
- "Since the change of rules I have decided to join another fishing club, i.e. Felling fly fishing, fishing the Tyne, Tees and Till"
- "The impact has had a huge negative affect on my fishing both from an enjoyment perspective and the effectiveness of my efforts. To the point where I have considered whether it's worth bothering to fish for Salmon and Sea Trout in Wales at all. I have fished in Wales now for 45 years and it has been a huge part of my life"
- "as a pensioner with limited funds, the latest changes decided me to no longer buy a salmon licence & I no longer intentionally fish for salmon & seatrout."

¹⁵ Mandatory Catch & Release – anglers are required by law to return all fish to the river

¹⁶ Voluntary Catch & Release – Anglers abide by a voluntary code, usually agreed and policed by angling clubs

7. Anglers are required to use barbless (or debarbed¹⁷) hooks when fishing for salmon or sea trout

- **104 anglers (36.4%)** reported that they <u>lost more fish</u> during 2020 as a result of using barbless hooks
- 126 anglers (44.4%) reported that they <u>did use barbed hooks</u> at times during 2020

If anglers are landing fewer fish then catches will be lower and that will have a <u>negative impact on</u> <u>stock assessments¹⁸.</u> There are a number of reasons which may explain why so many normally law abiding anglers will choose to break this rule. Many realise that it achieves very little other than reducing their ability to land fish, particularly when so many modern hooks are microbarbed.¹⁹ Many worm anglers realise that it is far more difficult to get worms to remain on the hook.

- "I find the barbless hook and gape size of the hooks for migratory fish a bafflingly and nonsensical regulation that must have been imposed by non-anglers".
- *"Trying to hook and land a salmon on a spinner with a barbless single on is pretty impossible"*
- "Using a barbless fly is ridicules (sic) on a fish that as soon as it's hooked goes airborne"
- 8. Anglers are no longer allowed to use worms to catch salmon. However they can use a single worm for sea trout (despite the fact that a salmon is just as likely to take it!). We asked worm fishermen how this had affected their catches.

113 anglers fished with worms at some point during 2020

- 40 worm fishermen (35.4%) reported that they <u>caught more juvenile fish</u> as a result of using a single worm
- **37 worm fishermen (32.7%)** reported that they <u>caught less fish</u> as a result of using a single worm
- 47 worm fishermen (43%) admitted <u>using more than a single worm</u> at times during 2020

Most anglers will comply with restrictions when they are able to see their purpose. When that is not the case, and there is little risk of getting caught, anglers will choose to ignore them.

- "I have fished in Wales now for 45 years and it has been a huge part of my life. I am an angler who looks to use all the methods available to him to catch fish in all situations and conditions. The new byelaws have left me with no other option at times but to break the rules in order to do justice to my angling efforts."
- "If bye laws keep changing and are rarely policed more people will just ignore them if there is no obvious benefit to the fish."
- "Before the Byelaws my river of choice was the River Dee and my favourite method was to worm for salmon primarily (and also sea trout). Following the Byelaws I did not fish for salmon in 2020 which I find both frustrating and upsetting and my personal opinion is that the Byelaws have been introduced for political reasons (decision makers opposed to fishing) rather than fish conservation."
- 9. Anglers are no longer allowed to use either shrimp or prawn to catch salmon before 1st September. We asked how they had been affected by this rule. 54 anglers stated that they had fished with shrimp or prawn during 2020. Of these

¹⁷ Hooks where the existing barb has been crushed

¹⁸ The numbers of fish officially recorded will appear to be lower than is actually the case

¹⁹ A hook with a much reduced barb which minimises the risk of damage to a fishes mouth

- More than 79% of anglers reported that they caught fewer salmon as a result of this rule
- 18.5% of anglers reported that the ban <u>reduced their expected catch by 50-75%</u> whilst a further 14.8% reported that their overall catch was <u>reduced by more than 75%</u>
- 10 anglers admitted that they did use shrimp or prawn on occasions before 1st September

Again this aspect of the byelaws is having a negative impact on stock assessments

• "I would prefer rules on fishing set by responsible anglers and angling bodies. The rules are idiotic and clearly not thought through or developed with anglers' advice or expertise. The banning of shrimp or prawn until September is particularly idiotic"

10. Anglers are now required to use single hooks whilst spinning²⁰ for salmon or sea trout. Again we asked how they had been affected by this rule.

Of the 157 anglers who fished with spinners for salmon and sea trout during 2020:

- More than 60% of anglers reported that they <u>caught fewer salmon as a result of this rule</u>
- 12% of anglers reported that the ban <u>reduced their expected catch by 50-75%</u> whilst a further 17.2% reported that their overall catch was <u>reduced by more than 75%</u>
- 40% of anglers admitted that they <u>did use treble hooks whilst spinning</u> during 2020

Given the numbers of anglers who use this method of angling <u>the reduced numbers of fish landed</u>, <u>and therefore not recorded</u>, <u>should be a major concern</u>. Anglers' frustrations are evident in the comments which we received on this matter:

- "Spinning for salmon and sea trout in my opinion is a totally ineffective method of catching fish under the current NRW bylaws."
- "After I had converted all my spinners to single hooks I found that all of the locals thought I was mad, as they had all decided to continue with trebles, due to losing so many fish! This convinced me to put some trebles back on my spinners."
- *"Trying to hook and land a salmon on a spinner with a barbless single on is pretty impossible."*

11. We asked anglers if the byelaws had made any difference to how much they enjoyed their fishing during 2020

Angling is a welcome distraction from the pressures of a busy working life for many anglers and as such makes a **major positive contribution to their mental wellbeing**. However:

- 70.25% of anglers reported that they enjoyed their fishing less as a result of the byelaws
- 36.9% of anglers reported that they <u>no longer fish at least one of their regular waters</u>

<u>There are significant implications here for the delivery of the Health & Wellbeing of Future</u> <u>Generations Act in Wales</u>

- o "Prior to the new byelaws I ENJOYED my fishing in Wales, I no longer do"
- "It has taken the shine off fishing for me and as a result I am fishing a lot less."
- "Speaking with many game anglers affected by the new rulings, they seem rather dispirited and dismayed by it all and offer the view that it has been poorly handled by NRW"

²⁰ A method of angling using an artificial lure which wobbles or spins in the water in order to attract fish

- "I have not renewed my membership of another game angling club in North Wales as it is no longer worth going."
- "When I was a young boy I was encouraged to go fishing to keep out of trouble. Now the NRW are trying to criminalise me whilst enjoying a hobby I have done since I was young. If I believe the current NRW byelaws would improve salmonoid (sic) stocks I would applaud them but they don't. These byelaws just restrict anglers enjoyment"

Conclusions

Stock Assessment

There are many experienced anglers and fishery managers who already regard the current EA/NRW/Cefas²¹ Stock Assessment Methodology as <u>not fit for purpose</u>. However, when lack of angling effort, lost fish due to hook restrictions, reduced catches due to bait bans and reduced fishing periods for certain methods have such a profound negative impact on catches <u>how can anyone justify continuing with the current system</u>.

- "I often walk up and down the river and very rarely see anyone fishing now, A couple of years ago I would have seen about Ten anglers and on a flood Twenty or so anglers. So how can the NRW know if their plan is working as they rely on catch returns to gauge the health of the river?"
- I no longer fish in Wales for Migratory Fish due to the 2020 Byelaws introduced by N.R.W. I do however fish for Brown Trout and Grayling, and on occasions catch both Salmon and Sea Trout on Trout/Grayling tactics (all fish are returned), as I do not have a Migratory Fish Rod License and as a direct result of this I am not required to submit a catch return so these fish are never counted in E.A. or N.R.W. figures..... yet another failing on N.R.W.'s part.
 "I no longer sadly even fill in my EA catch return in protest of the situation we anglers face."

The Net Loss to our Rivers

A key element has not been addressed here in the relentless pursuit of a legislative solution i.e. <u>zero</u> <u>exploitation of fish stocks is not a realistic goal</u>. In the mistaken belief that seeking to prevent generally law abiding anglers from taking the occasional salmon is a priority concern, NRW are exposing rivers to <u>an</u> <u>increased threat of illegal exploitation</u> which causes <u>significantly greater damage to fish stocks</u>. The result is a significant <u>Net Loss</u> to our fisheries.

- "Imposing too many restrictions will inevitably result in fewer angles (sic) fishing the waters. Currently most anglers are the eyes and ears of the Agencies"
- "It is with regret I note the way in which policy appears to be formed without putting fishermen and fishing clubs at the centre of the decision making process as the interests of the target species are best catered for by those who stand to benefit most from conservation of that species."
- "Not as many anglers on the rivers, to report any incidents ie poaching, pollution and general activity on the rivers. Anglers police their own beats that they fish on, with these regulations it will become a poacher's paradise on some Welsh rivers, not enough 'eyes' to keep a watch on things."

We do of course realise that the Byelaws are in place for a 10 year period and whilst we recognise that NRW *"are committed to a 5 year review"* we have little confidence that any of the concerns raised here will be addressed.

²¹ Centre for Environment, Fisheries and Aquaculture Science.

Annex 1

PAAS Member Feedback Survey - Fishing in Wales

The Impact of the All Wales Byelaws on Salmon & Sea Trout Angling

New catch controls for salmon and sea trout angling in Wales were introduced in January 2020. We are trying to assess the impact of these restrictions on our fisheries. This survey is anonymous and we would really appreciate honest answers. This enables us to provide the best provision and where possible, to act on our members' behalf in relation to the feedback we receive.

The survey will take 5 to 10 minutes to complete.

1. Which of these statements best describes where you live and fish

- C I live and fish in Wales
- C I do not live in Wales but visit in order to go fishing

2. In Wales what do you fish for? Select all that apply.

- Coarse Fish
- Trout
- Sea Trout
- □ Salmon

3. Many visiting anglers like to have a seasonal base in Wales, such as a caravan or cottage

- No I do not have a seasonal base in Wales
- Yes I do have a seasonal base in Wales
- ^C Yes I have a seasonal base in Wales but have considered giving it up as a result of the byelaws
- C I used to have a seasonal base in Wales but have given it up as a result of the byelaws

4. Enforcement Officer How long is it since you were last approached by an NRW Enforcement Officer whilst fishing in Wales?

- C = 1 2 years
- 3-5 years
- More than 5 years

I have never been approached by an NRW Enforcement Officer

4i Reporting to an Enforcement Officer or the Incident Hotline

The new byelaws have made no difference to whether I am likely to pass on Information to the NRW Incident Hotline or Enforcement team

As a result of the new byelaws I am now less likely to pass on Information to the NRW Incident Hotline or Enforcement team

5. What is your overall assessment of how well NRW as an organisation look after our rivers and fisheries? Based on a score of 1-10 where 1 is extremely poor and 10 is excellent what is your overall assessment of how well NRW as an organisation look after our rivers and fisheries?

6. Game Anglers - The impact of the Byelaws on your angling

(Questions 6, 7, 8 & 9 relate to Game Angling only. If you do not fish for salmon and sea trout in Wales please go straight to Q10)

What has been the impact of the Byelaws on your angling effort in Wales during 2020? Choose the statement below which best describes your fishing effort. (Please try to ignore the impact of Covid-19 travel restrictions when making your response).

- C I fished more often during 2020 as a result of the new Byelaws
- C I did not fish as often during 2020 as a result of the new Byelaws
- The new Byelaws have made no difference to how often I fish
- I no longer choose to fish in Wales as a result of the Byelaws

7. Game Anglers - Your views on the Mandatory Catch & Release element of the Byelaws

- I agree with the introduction of Mandatory C&R on all rivers in Wales
- C I disagree with the introduction of Mandatory C&R on all rivers in Wales
- ^C I agree with Voluntary C & R where appropriate on a river by river basis
- I am opposed to both Voluntary & Mandatory C&R

8. Game Anglers - Impact of Method Restrictions on your angling during 2020

8i. Game Anglers - Using barbless hooks - part 1

- ^C Barbless hooks made no difference to the number of fish I landed
- I lost more fish during 2020 as a result of using barbless hooks

8i Game Anglers - Using barbless hooks - part 2(Please answer honestly)!

- I always used barbless hooks throughout 2020
- I did use barbed hooks at times during 2020

8ii, Game Anglers - The ban on using more than a single worm - Part 1

- I do not worm fish for salmon or sea trout (Go to question 8iii)
- Using a single worm made no difference to the number of fish I caught
- I caught more juvenile fish as a result of using a single worm
- Overall I caught less fish as a result of using a single worm

8ii Game Anglers - The ban on using more than a single worm - Part 2

- I always used a single worm throughout 2020
- ^C I did use more than 1 worm at times during 2020

8iii. Game Anglers - The ban on fishing with shrimp & prawn before 1st September - Part 1

- I do not fish with shrimp or prawn (Go to question 8iv)
- C The ban made no difference to my overall catch
- C The ban reduced my expected catch by 0-25%
- The ban reduced my expected catch by 25-50%
- C The ban reduced my expected catch by 50-75%
- C The ban reduced my expected catch by more than 75%

8iii. Game Anglers - The ban on fishing with shrimp & prawn before 1st September - Part 2

- ^C I did not use shrimp or prawn before 1st September
- I did use shrimp or prawn on occasions before 1st September

8iv. Game Anglers - The ban on multiple hooks on spinners and lures - Part 1

- ^C I do not spin for salmon or sea trout (Go to question 9)
- C Using single hooks made no difference to the number of fish I landed
- C Using single hooks meant I lost less than 25% of the fish that I hooked
- ℃ Using single hooks meant I lost 25% 50% of the fish that I hooked
- Using single hooks meant I lost 50% 75% of the fish that I hooked
- ℃ Using single hooks meant I lost more than 75% of the fish that I hooked

8iv. Game Anglers - The ban on multiple hooks on spinners and lures - Part 2

- I always used single hooks whilst spinning during 2020
- ^C On occasions I did use treble hooks whilst spinning during 2020

9. Game Anglers - Have the Byelaws made any difference to how much you enjoyed your fishing during 2020?

- The Byelaws have made no difference to how much I enjoyed my fishing
- C The Byelaws have meant that I enjoyed my fishing more
- The Byelaws have meant that I enjoyed my fishing less but will continue to fish my regular waters
- ^C The Byelaws have meant that I enjoyed my fishing less, I no longer fish at least one of my regular waters

10. Is there any other information that you would wish to share with us regarding the impact of the All Wales Byelaws on your fishing?

Ê
~
2

11. I am a member of PAAS / I am not a member of PAAS

- C I am a member of PAAS
- C I am not a member of PAAS

Thank you for taking the time and trouble to complete this form. Please click SUBMIT to return your completed survey.

Submit

APPENDIX 2

AN ANALYSIS AND REVIEW OF THE ENVIRONMENT AGENCY TECHNICAL CASE

A rigorous quantitative and qualitative analysis of the Technical Case has been conducted to highlight the errors and inadequacies of the underlying methodology of the stock assessments undertaken.

HEADLINE POINTS

- The claimed average all age class exploitation rate of 11.1% is incorrect and not being applied as claimed. The actual average exploitation rate is higher and varies from between 11.3% to 13.4% depending on the proportion of MSW salmon in the catch
- If the 11.1% exploitation had been applied to both age classes, the returning stock estimate would have been between 10-17% higher, meaning that between 2010 and 2019, an additional 3,800 salmon would have been estimated cumulatively to have returned to the Severn.
- The stock assessment model has too many parameters that have remain unchanged and unchallenged since 2002 and the cumulative effect of them is to depress the egg deposition rates on the Severn.
- There appears to have been no sensitivity analysis conducted to examine the impact of changes in the parameters over almost 20 years.
 - There is published evidence that the applied mortality rates are too high and well beyond the range found across the N Atlantic countries.
 - The review of fecundity rates in 2018 has now placed the Severn fecundity rates below those in Scotland and Ireland and Canada, especially in the heavier MSW weight ranges
 - There is no evidence of efforts (e.g. from netting stations) to validate that the change to a national scale reflects conditions the Severn
 - There is published evidence that the proportion of females varies annually. Again, no attempt has been made to validate the use of fixed proportions for each sea age.
- There is published evidence that catch and release mortality rates from bait fishing is around 15% and 16% from lure fishing and that deep hooking is more prevalent which makes a nonsense of the proposal to ban bait fishing,
- Trend analysis is over simplistic and uninformative except as a proxy when better information is either not available or ignored.
- If we must consider trends. Then it is clear that since 2002, neither the egg deposition time series nor catch on the river Severn have exhibited statistically significant trends at most credible percentile levels.
- It is superficial to ignore the impact of the dramatic drop in rod effort on catch levels. We demonstrate from stochastic modelling that had effort remained at 2010 levels, catches would have been much higher.
- The byelaw is likely to reduce the number of anglers and catch. It is a measure that will undermine the basis of the stock assessment. An own goal.
- Our analysis of juvenile salmon at sites that have been consistently monitored on an annual basis does not present a picture of decline.

I EXPLOITATION RATES

In practice the EA employs different exploitation rates for each of the two sea age classes. Its model assumes an all sea age exploitation rate of 0.111 (11.1% of returning stock), which is then converted into an exploitation rate for 1SW fish (0.111/1.2)= 0.099 and (0.111/0.8) = 0.139 for MSW fish²². However, it is quite clear that 0.111 is in no sense an average

exploitation rate for the river, and in effect the EA applies a higher exploitation rate to the Severn. This in turn reduces the estimated level of returning than were a single rate to be applied. **The chart below illustrates the reason behind error of claiming of a single all river age class rate of 0.111.** The black line is the locus of all points that combinations of 1SW% and MSW% of total stock yield a weighted average rate of 0.111. The red line however is the locus of all points in which 1SW% and MSW% sum to

unity, which they must. The conclusion we draw is that there is only one unique combination of 1SW and MSW stock numbers that will be consistent with a rod exploitation rate of 0.111, and that is if the returning stock comprises of 70% 1SW and 30% MSW. But the Severn is a predominantly MSW river, the lowest percentage being 50% in 2010 and 91% in 2019.

The table below shows the implications of the double vs single river exploitation rate on estimated stock numbers. The actual all sea age average exploitation in recent years has ranged from 0.123 to an estimated 0.134 in 2010 and 0.131 in 2020. The underestimation of returning salmon numbers using the twin sea age exploitation rates compared with the all sea age average ranges from some 200 to 755 salmon, and in total from 2010-20 would be a cumulated underestimate of 3.388 salmon,.

	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020 prov
Declared rod catch	212	234	361	249	333	211	468	334	329	185	159	218
Uplified catch to compensate for undeclared catch and disperity with private sources.	233	257	397	274	366	232	636	441	421	279	175	246
Uplift rate of compensation for undeclared catch	1.1	1.1	1.1	1.1	1.1	1.1	1.35	1.32	1.28	1.51	1.10	1.10
Estimated proportion of 1SW salmon in total catch	0.32	0.50	0.25	0.30	0.21	0.23	0.22	0.17	0.37	0.33	0.09	0.16
Estimated proportion of MSW salmon in total catch	0.68	0.50	0.75	0.70	0.79	0.77	0.78	0.83	0.63	0.67	0.91	0.84
Returning Stock numbers at Rod Exploitation Rates (RER) of :-			Es	timated re	turning salr	mon numbe	ers on the	River Sev	/ern	100	1	
EA Applied RERs of 0.099 (15W) & 0.139 (MSW)	1,894	2,222	3,145	2,209	2,853	1,823	4,975	3,392	3,479	2,272	1,304	1,881
EA claimed All sea age average RER of 0.111	2,099	2,315	3,577	2,468	3,297	2,090	6,730	3,973	3,793	2,514	1,576	2,216
Difference in returning stock estimate	-205	-94	-432	-260	-444	-267	-755	-581	-314	-241	-272	-335
% Underestimate	-9.8%	-4.0%	-12.1%	-10.5%	-13.5%	-12.8%	-13.2%	-14.6%	-8.3%	-9.6%	-17.2%	-15.1%
All fish average RER using EA assumed separate RERs for 1SW & MSW	0.123	0.116	0,126	0.124	0.128	0.127	0.128	0.130	0.121	0.123	0.134	6 131

The point being made here is that the selection of exploitation rates is crucial to the stock estimate. If the EA claimed all sea age average is 11.1%, this is only possible with a grilse percentage of 70% which is extremely unlikely on the R Severn. Otherwise the all sea age exploitation rates are effectively higher than published in the stock estimates. Or to put it another way, either the all sea-age exploitation rate is inaccurate, or not being applied.

²² The unstated rationale presumably being that MSW fish are not only probably in the river for a longer time than 1SW fish but being of heavier weight, more desirable to the angler to retain rather return to the river.

II OTHER PARAMETERS

Identification of the age-weight classes of the Severn catch is related to angler declared weights compared with age-weight tables. Peer reviewed judgements appear to vary on whether weight or fork-length is best for estimating either sea age or fecundity. Bacon P.J, et al²³ (2011) suggested that weight is a less satisfactory predictor than length of the sea age of fish. Furthermore a number of studies also suggest that length is a preferred predictor to weight in estimating fecundity -see amongst others Hanson N et al (2019)²⁴. De Eyto et al (2015)²⁵ who utilised both length and weight in explaining the fecundity Irish salmon. As anglers in England record catch, weight and days fished on their annual licence returns to the EA, use of weight for sea age and fecundity is a pragmatic choice, as length measurement is not collected.

In order to arrive at the egg deposition estimates a number of other factors also have to be considered -these relate to in-river mortality rates of fish (which includes the mortalities of fish retained by anglers), and the mortality rates of fish that have been caught and released. Also an estimate of the proportions of females in the 2 sea age groups is required to arrive at the numbers of spawning females. Finally, the EA model uses a fecundity rate equation which relates the number of eggs per female to her weight.

It is clear from the Stock assessment tables that there has been no change in the following assumed model parameters since 2002:-

- The stated all sea age exploitation rate of 0.111
- The individual 1SW and MSW exploitation rates 0.099 and 0.139 respectively
- The returned catch mortality rate of 20%
- The in-river mortality rate of 0.091 which includes retained/killed fish
- The proportions of females in the 1SW and MSW age classes of 0.298 and 0.816 respectively
- The conservation limit of 12.85 million eggs.

It is as if these are universal constants unaffected by the environmental and anthropogenic pressures or changes on the salmon population. A look at Fleming I (1998)²⁶ Fig 5 will quickly reveal the annual variability in the proportion of females. *There appears to have been little effort made to make recent use of netting station catches to identify the proportions of female fish caught or to take scale samples for sea age classification.* Hence current Stock Assessment is almost a tick box exercise which generates the estimate of egg deposition by plugging in a few variable elements -viz, the declared rod catch, an uplift in catch (in most years 1.1) to account for undeclared rod catches, the retained and returned catches by anglers, the angler estimated weights of the fish they have caught which helps to partition the catch and stock into age class and generate the eggs deposited through a national standard fecundity equation

²³ Bacon P.J et al (2014 Objective determination of the sea age of Atlantic salmon from the sizes and dates of capture of individual fish.

²⁴ Hanson N (2019) .Hierarchical analysis of wild Atlantic salmon fecundity in relation to body size and development traits. J. Fish Biol, 2020. 96:3. 316-326

²⁵ De Eyto, E. (2015) The fecundity of wild Irish Atlantic salmon and its application of stock assessment purposes. Fisheries Research 164 (2015) 150-169.

²⁶ Fleming I. (1998). Pattern and variability in the breeding system of Atlantic salmon, with comparison to other salmonids. Can. J. Fish.Aquat. Sci. 55(Suppl 1) 59-76

III FECUNDITY

The fecundity of Severn females was reviewed in 2019 and replaced by a national weight - eggs scale, higher specific rates for the Severn having formerly been used, but never sample checked for accuracy from the 1990's until 2018.

It is instructive to compare the1991 fecundity rate function now employed in the EA Assessment model²⁷ with those in two recent studies based on 7 major salmon rivers in Scotland (Hannson N et al op cit)and another on 11 rivers in Ireland (de Eyto et al op.cit). and on the Canadian Miramichi (Reid J and Chaput G 2012²⁸.. *It is quite clear that above the 3 to 4.5 kg weight ranges the EA fecundity curve is below the Scottish and Irish curves, i.e. at those higher weight ranges where the MSW salmon are situated as the dominant age class and source of eggs in the Severn. There is therefore a pertinent question as to whether the revision has over-emphasised the depression in fecundity in its model and has contributed to the drop in risk status of the Severn.*

The fixed fecundity rate formula re-introduced in 2018 that reduced estimates of egg deposition. The magnitude of this "adjustment" is not revealed in the Technical Case²⁹ but as the table below reveals it produced a substantial impact of retrospective egg deposition estimates ranging from 39%-59%., sufficient to undermine the extant Probably Not at Risk Status. Two more subsequent revisions involving changes in the weight distribution tables have also followed but the final outcome is still a substantial reduction in egg deposition estimates. These past values are crucial to the degree to which the management objective criteria are satisfied. Whilst the reviews may reflect an urge to improve after years of stasis in the weight distribution tables, nevertheless it is indicative of a model which even after its inception in 2002, has rarely attained settled status and is now part of an ongoing three year project to review Conservation limits and Stock Assessment.

²⁷ EA personnel may not recognise the function in this chart, but it is simply a re-estimate of the data generated by their Pope 1991 function, somewhat shorter, and simpler to comprehend.

²⁸ Reid J and Chaput G Spawning influence on fecundity, egg size and egg survival of the Atlantic salmon from the Miramichi River New Brunswick, Canada . ICES Journal of Marine Science (2012), 69(9), 1678–1685. doi:10.1093/icesjms/fss091

	Egg Deposition Revisions % changes on previous version														
Estimate dates	stimate dates 2009 2010 2011 2012 2013 2014 2015 2016 2017 201														
Amended 2019 V1	-42	-44	-44	-39	-40	-52	-52	-59	-47	-45					
Amended 2019 V2	0	0	0	0	0	0	6	19	-12	36					
Amended 2020 V3	0	0	0	0	3	16	9	11	22	12					
Net Change	-42	-44	-44	-39	-39	-44	-45	-45	-43	-16					

IV Mortality / Survival Rates

Turning now to the fixed parameters. *It is clear that assumed mortality rate in the EA assessment of Severn stocks for returned catch at 20% is exceptionally high relative to the results of many studies*. Lennox et al³⁰ indicate a survival rate of 83% (mortality rate of 7%) across N Atlantic river fisheries. Smith et al (2014)³¹ provide a useful summary of the ranges of catch and release release mortality. In Canada, estimates range between 5-15% with higher mortality for released salmon in summer. Their modelling study assumes 10% mortality and simulates over a range of exploitation rates. At the time of the article neither Norway nor Ireland included a mortality rate for caught and released fish (ie zero mortality).Van Leeuven T et al(2020)³²

Furthermore Lennox et al, (op cit) indicate that survival /mortality rates vary according to fishing method. Fly caught salmon mortality was lowest at 4%, bait fished released salmon at 15% and lure fished salmon at 16%. Given the proportions of salmon caught by these methods on the Severn³³, one might therefore expect a weighted average mortality rate of around 14% . Their study also calls into question the justification advanced for the proposed byelaw to ban bait angling, but to allow lure angling. Given there is no discernible difference in released fish mortality by either method, the banning of bait seems unjustified. More fish were deep hooked on the fly than by lure and bait. This study's conclusions refute the EA supposition " that the reduced level of C&R observed for bait fishing may reflect the fact that salmon taken on worms tend to be deeply hooked and therefore in poor condition to be returned alive"³⁴

It would seem that it would be more prudent to invoke the precautionary principle in the use of the present Stock Assessment model until a more robust analytical framework evolves in 2022/3, and avoid the introduction of a 10 year byelaw when there is still the potential for significant change in the stock adjustment and CL methodology.

It is very surprising that the annual stock assessment does not review whether these fixed parameters might have changed, or indeed whether any sensitivity analysis has been conducted given that each will have some (albeit perhaps unknown) probability distribution.

³³ EA Technical case p27

³⁴ Technical Case p27 of 65.

³⁰ Lennox R J et al (2017) Pan-Holarctic assessment of post-release mortality of angled Atlantic salmon Salmo Salar. Biological Conservation 209 (2017) 150-158;

³¹ Smith, G.W. et al (2014) Assessing the status of Scottish Atlantic salmon stocks using reported catch data: a modelling approach to account for catch and release in the rod &line fishery. Scottish Marine and Freshwater Science Vol 5 No. 11

³² Van Leeuven et al .2020. Mortality of Atlantic salmon after catch and release angling:assessment of a recreational Atlantic salmon fishery in a changing climate. Can. J. Fish. Aquat. Sci.: 1–11

The decision process treats the egg estimates for each year as definitive. There have been no published details regarding the Bayesian trend estimation, what the priors are to generate the posterior distribution that leads to Bayesian trend or its credible interval, nor any indication of its slope. There is indeed a large black box in which the stock assessment is conducted and the evaluation of its outcome.

V STOCK ASSESSMENT PARAMETER SENSITIVITY ANALYSIS

Given that the model contains a large number of fixed valued assumptions it might be instructive to explore the EA Stock Adjustment model outputs through a number of scenario -based sensitivity analyses to examine resulting changes in the egg deposition estimates to the scenarios. The analysis is based on the pre 2020 amended version of the stock adjustment model as the 2019 revised dataset of stock adjustment was only released to an FOI request in early March 2021. The table below sets out the combination of assumptions that were retained or changed in each scenario. One key scenario was to apply the all age class exploitation rate to both age classes. Variations in assumed mortality rates were also introduced and variation in the fecundity rates using the Scottish equation to simulate that derived from Hansen et al (op cit)

Scenario M	odelling Assu	mptions for	Egg Deposition Es	timates		
		Rod Exploitati	on Rates RER	Mortali	ity Rates	Eggs/kg fecundity
	1SW	MSW	All River Average	Released Fish	In-River Rate	All age classes
BASE (EA Extant Assumptions)	0.099	0.139	0.111 (not applied)	0.2	0.09	E =1881.7 W ^{0.7781}
SCENARIO I (Base with All Sea Age RER)	not a	pplied	0.111	0.2	0.09	E =1881.7 W ^{0.7781}
SCENARIO II (Base with Lower mortality rates)	0.099	0.139	0.111 (not applied)	0.14	0.05	E =1881.7 W ^{0.7781}
SCENARIO III (Scenario II and Lower Mortality Rates)	not a	applied	0.111	0.14	0.05	E =1881.7 W ^{6.7781}
SCENARIO IV (Scenario I plus higher fecundity rates)	0.099	0.139	0.111 (not applied)	0.2	0.09	E=1588.4 W ^{4.5647}
SCENARIO V (Scenario III plus higher fecundity rates)	not a	pplied	0.111	0.14	0.05	E=1588.4 W ^{8.9647}

The graph below illustrates the sensitivity of the egg deposition outcome under the various scenarios shown in the table above. It illustrates the fact that **modest variation in the** *assumed parameters and fecundity function consistent with published estimates can render a more favourable outcome in terms of egg deposition. Although some of the scenarios may not hit the 4 years in 5 Management Objective requirement, nevertheless the river Status would appear more secure and less at risk. To put it another way, most of the model parameters as extant serve to depress the estimates of egg production.*

VI CATCH

Catch is a given in the stock assessment process albeit with an uplift factor. However, it is subject to salmon population biological dynamic cyclical effects, is affected by river flow levels and rod effort.

First we consider the usefulness of trend analysis in examining catch. The graph below shows the estimate of a series of quantile trend regression equations of catch on time over a range of percentile levels from 20th to 80th percentiles³⁵ over the period 2002 to 2020. None of the estimated coefficients are statistically significant as the 95% confidence interval at each percentile incorporates a trend coefficient estimate of zero. Reliance on forecasting from a zero sloped trend is not particularly helpful when it comes to making strategic river management decisions.

There has been a substantial decline in rod effort on the Severn largely triggered by the introduction of statutory catch and release in 1998, though some decline is also due to an ageing angling population. The Technical Case does refer to declining rod effort and declining

³⁵ (tau =0.2,0.4,0.5. 0.6 and 0.8)

catches but does little to join the two together. In order to examine the effort-rod catch relationship, an ARMAX³⁶ stochastic dynamic model of declared catches on the Severn was estimated incorporating regional seasonal rainfall variables as proxies for river levels, 5 and 9 year trigonometric cyclical elements and rod effort days. Model fit is excellent (see I.h graph) Also shown are projections, to 2024 based on 20 year seasonal mean rainfall as a proxy for river levels and ARMAX model projections of effort.. It is also possible to use the catch model to adjust catch to a standardised .rod effort level such as in the graph on the right that is indicative of a more stable rod catch outcome when the downtrend in effort is excised³⁷. The advantage of this approach is that the model can be queried . Similar adjustments might be made for example for low or excessively high seasonal rainfalls on catch levels.

Given the positive relationship between catch and effort, catches would have been substantially higher if remaining at2010 effort levels. Conversely, declining effort levels will lead to lower catches. Simply presenting declining catches as a example of the deteriorating salmon stock situation on the Severn as the Technical Case does is both misconceived and misleading.

In exacerbating the continuing downtrend in effort through method restriction, the byelaw will produce two perverse effects. First it will lead to a reduction in catches. Second that will feed through the stock assessment into lower egg deposition estimates and the erroneous conclusion that salmon stocks have deteriorated further. -but only in the model! . The conclusion is that the proposed byelaw may well lead to erroneous judgements about the future stock levels by compromising and undermining. the very basis of the stock assessment -catch.

VII EGG DEPOSITION ESTIMATES

This biosystems modelling approach can be taken through to egg deposition also yielding more fruitful insights than the Bayesian quantile trend with no significant slope. With a suite of interdependent ARMAX models :effort feeding into catch, a model for the dynamics of age class proportions of the catch can feed as inputs into an egg deposition ARMAX model from which projections can be generated as illustrated below. Such an approach has greater information content, more flexibility in generating projections rather than from a trend echoing the past. What is clear from the graph below is that egg deposition estimates can equally be generated through dynamic stochastic modelling and projections made with

³⁶ Auto-Regressive Moving Average model incorporating eXogenous variables

³⁷ Fitting and projecting trends with no accommodation of underlying factors that drive them can lead to superficial and erroneous conclusions .

confidence limits. . But, the key point is that *it is clear the Severn has maintained an almost steady state around 9 million eggs whilst failing to meet Management Objectives . That should give pause for thought. How realistic is the MO and how relevant is the present Conservation Limit as clearly there has been a sustainable population?.*

In the graph, the long term 20 percentile trend is statistically non significantly different from zero as is the !0 year trend (not shown).

VIII JUVENILE SALMON

One final point of disagreement with selective presentation of information in the Technical Case concerns Juvenile salmon trends 38 .

The Technical Case provides no information on which sites are included in its presentation of Juvenile Densities and whether the aggregation is strictly one of an identical sample of consistently monitored sites.

Our own analysis of Severn and tributary sites found only 4 that were regularly surveyed consistently over the period 2011 to 2019 sufficient to generate a credible time series picture. The graph of the 0+ juveniles at these sites is presented below.

³⁸ Page 39 of 65.

Source data NRW

The picture is one of stability or growth in 0+ densities in the Tanat and Banwy with the exception being Severn Old Hall. Juvenile densities declined at 3 of the sites in 2019 however. All sites suffered from winter storms in 2016. The low densities of >0+ juveniles in the Technical case are not surprising as the parr will move downstream from the upper tributary sites to find deeper water and hopefully more abundant food and more shelter. But low numbers of >0+ juveniles will also reflect the fact that their numbers are being heavily predated by sawbill ducks and the smolts by cormorants as they descend the river.

IX CONCLUSIONS

- The Technical Case is largely descriptive and lacks any analytical rigour.
- It makes no attempt to indicate the impact of the proposal on the future dynamics of the Severn salmon stocks nor provides any estimates of the advantage in terms of salmon numbers that might be anticipated relative to the two alternative proposals.
- There is no full options appraisal for what is a significant piece of byelaw legislation given the 10 year duration with no indication of what might follow the five year review.
- There is no integration of the economic consequences into an options appraisal. Where
 a policy action may deprive or exclude individuals from their pastime, contingent valuation through travel costs is not an appropriate methodology for assessment of the welfare losses of those who lose out by the changes that follow, and direct survey methods would be necessary.
- The discount rate used in the economic analysis that is lacking a true cost benefit evaluation does not conform to Treasury norms.
- No sense is given of the social and economic impacts relative to the expected outcome of the byelaw imposition.
- The Technical Case signally fails to mention the 2020 provisional catch estimate increase and that declines in catches are related to a sustained decline in rod effort, that in part itself is a consequence of the introduction of statutory catch and release.
- The stock assessment modelling contains many unverified and unsubstantiated assumptions and show little or no evidence of updating the key parameters or in the case of exploitation rates no willingness to update.. The claim that an average all age class exploitation rate is 11.1 percent is demonstrably wrong. Were that the true average then the estimate of returning adult salmon numbers would be substantially higher.
- Mortality rates appear to be too high while fecundity rates have been lowered and seem to be at variance with those in published peer reviewed papers.
- The key parameters in the stock assessment have the effect of depressing the estimates of egg deposition estimates. While this may suit the case being presented for the byelaw, a sensitivity analysis adjusting these parameters to levels in in the scientific literature cited can present a more positive picture of the state of the stocks in the R Severn.
- There have been three revisions to the current and past stock assessments within the space of two years. This is indicative of a lack of robustness and reliability in the analysis which is underpinning Severn fisheries management legislation. Already, emergency catch and release byelaws have been imposed in 2019 and 2020 based on egg deposition data that have subsequently been revised. This undermines trust in the transparency and justification for such byelaws and in the application of evidence-based decision making relating to the Severn.

APPENDIX 3

NWATFCC short analysis of EA Technical Case justification for Severn NLO & Byelaws

There is clear evidence from the Appendix 2 analysis of the Technical case justification and FOI sourced Severn 10 year stock calculations that there is significant error and explanations required for the use of River Severn variables applied in calculating annual egg deposition stock estimates.. These river variables and national assessment systems and procedures are currently undergoing a national review process which we have been notified would inform earlier river estimates. Yet there is no mention in the Consultation documents of this landmark process for improvements being made to these critical river variables, the river status assessment methodology and decision process. We find;

- The EA & NRW claims & statements of "Severn stocks in alarming 30 year decline, unsustainable and with no harvestable surplus" are not supported by actual EA Severn angler declared catches over this 30 year period
- The EA have found reason to make three revisions in the last 18 months to the Severn 10 year (2009 2018) historic annual stock estimates to "correct" applied river variables, including two for the Emergency Byelaw Decision paper. SFG maintain the fourth and final estimates still contain significant error.
- The foundation on which final spawning stock estimates are derived for the River Severn (and most E & W rivers) is rod catch estimates. Those estimates require application of the I.Small 1991 model for correcting under reported catch. SFG find the five years 2010 - 2014 have under estimated and incorrectly applied uplifts whilst the return to use of the default 1.1 uplift in 2019 is not supported by reliable independent rod fisheries estimates from the Wye and NW rivers.
- The explanations for adjusting Age Weight tables and use of "fixed" Age Weight tables in the 2015 - 18 Emergency Byelaw revisions does not correspond with the actual use of Welsh Dee and Severn specific tables that took place in estimating Severn egg deposition calculations.
- The EA commitment in 2004 to introduce an improved procedure for annually revising rod exploitation rates (RER) taking account of seasonal factors including rod effort and river conditions was adopted in Wales but not in England. As a result many rivers including the Severn have had fixed RER applied since 2004 the year the EA introduced the new river status classification system.

The use of a fixed Severn 11.1% average RER for 16 years when numbers of anglers and rod effort has fallen by 50% cannot be justified i.e. where are the findings of the 2019 national RER review ? The 2018 & 2019 year assessments are critical with low effort in the 2018 drought combined with the impact on angler participation in the 2019 Emergency Byelaw restrictions.

- A revision and updating of assumptions and evidence to more recent research is called for in the use by the EA of an average 20% C & R mortality estimates for fly, spin and bait angling methods.
- The Agreement on Adoption of Precautionary Approach principles between NASCO & Contracting Parties (EA & NRW) states "*Parties should be more cautious when information is uncertain, unreliable or inadequate*" and is particularly relevant in view of the reliance

placed on missing and incomplete supporting evidence of Supplementary data (Severn redd & fish counter datasets and sampling frequency and number of juvenile survey sites.

• We cannot agree with the Agency's statement that they are making use of the best available data to inform the NLO & Byelaw review.

The EA is the lead regulatory body for the Severn catchment and rod fisheries look to the Agency to take into consideration the evidence of reported error in stock estimates, the incomplete and missing supplementary data and reach a recommendation that delivers improvements for the whole fishery.

We firmly believe that Option 1 (90% Voluntary C & R and Voluntary angling method restrictions) is the correct approach and promotes cooperative partnership working between the Agency and its fisheries at a time when fisheries team resources are stretched and we have the improvements to stock assessment on the horizon.

Option 1 is the EA national strategy delivered and agreed in the 2019 national Salmon Byelaws. It is the Decision Structure measure for a Probably at Risk river designation for England & Wales, as approved and directed by NASCO policy.

APPENDIX 4

NWATFCC in depth analysis of EA Severn NLO & Byelaw Consultation Technical case justification of stocks

North West Angling Trust Fisheries Consultative Council

part of the Angling Trust and AT North West Freshwater Forum

6th April 2021

Dear Sir,

North West Angling Trust Fisheries Consultation Council is a contributor to the Severn Fisheries Group with a major interest in the Consultation through its affiliated interest - Prince Albert Angling Society.

As Chairman of NWATFCC I am submitting the following Objection and SFG alternative proposals set out in the accompanying document:

- Introduction
- EA & NRW claims & statements "Severn stocks in alarming 30 year decline, unsustainable, no harvestable surplus"
- The Emergency Byelaws process & three Severn stock revisions
- Analysis of EA Severn stock Technical Case:
 - 1. CL principles, Management targets & accuracy of Linear trend predictions
 - 2. Angler Declared rod catch and use of river and national angler uplifts
 - 3. Revisions to Age Weight proportion`s of 1SW/MSW salmon and female contribution to stock estimates
 - 4. Use of "fixed" Rod exploitation rate variable
 - 5. Use of outdated In River & C & R mortality estimates
 - 6. EA changes to Fecundity estimates
 - **7.** River stock status classification, alternate status & Decision models, E & W Decision Structure process, National 2019 Byelaws
 - 8. SFG corrections to historic assessments including critical 2018 & 2019 years
 - 9. Supplementary data Tanat Counter, Juvenile survey data, red counts ?
 - **10.** Use of best available data to inform Byelaw review and conservation measures
- Rod Fishery Management Options

Introduction

This Objection to the EA Consultation proposal stems from correspondence between Prince Albert AS and the EA dating from July 2019 in objections to the implementation of the Severn Emergency byelaw of the 15th June 2019. This led directly to later communications with the Defra Minister, FOI requests, a Formal Complaint to the EA and working as a key partner in the formation of the SFG and pre-Consultation discussions with EA.

This Objection reveals weaknesses and unexplained changes to EA annual stock assessment procedures and estimates for the Severn (current year and over the 10 year historic cycle) in the EA fisheries team arriving at its interpretation of stock health. But also raises fundamental questions that have to be answered over deploying mandatory measures when they have limited effect, fail over enforceability and carry high risk in terms of unintended consequences that weaken river stock protection.

It leads to the SFG conclusion that the EA proposal to fast track the Formal Consultation process and its earlier 2019 Emergency Byelaw process was and is ill advised, formed on statistically invalid stock assessments and uncertain River status projections. These "All Wales" proposals alienate anglers and as the PAAS survey of 550 anglers fishing Welsh waters, ill conceived mandatory measures have quite unintended outcomes.

following stock analysis sections identify significant error in the use of Severn River variables and SFG recommends and formally requests recalculation of specific years where stocks are clearly underestimated. A final summary of proposed revision highlights the scale of potential underestimated stock.

Rod catch estimates are the primary indicator of river stock health for most E & W Rivers and require at least a core level of participation by competent anglers to provide a degree of validity in stock estimates. The number of Severn salmon anglers has fallen to a critical 200 mark in the past 3 years, principally because of the introduction of restrictive Byelaw measures. Have the EA carefully considered how introducing 10 year mandatory measures will impact on the alarming decline in angler participation and whether rod catch stock estimates will be sustainable in future years? Equally, there appears to be a a heavy reliance in the Consultation justification on Supplementary data as the secondary string of evidence to support the rod catch stock assessment. With no recent Severn redd count data, incomplete juvenile electro fishing data and the River Tanat (tributary of a tributary of the Severn) providing the only reported adult count data, SFG has justifiable grounds to question the Fisheries teams conviction that this secondary

The first of the Precautionary Principles for Contracting Parties is particularly relevant.

CNL(98)46

Agreement on Adoption of a Precautionary Approach

1. NASCO and its Contracting Parties agree to adopt and apply a Precautionary Approach to the conservation, management and exploitation of salmon in order to protect the resource and preserve the environments in which it lives. Accordingly, NASCO and its Contracting Parties should be more cautious when information is uncertain, unreliable or inadequate. The absence of adequate scientific information should not be used as a reason for postponing or failing to take conservation and management measures.

We strongly recommend the EA use caution in its approach and review the evidence SFG present of its interpretation of rod based assessment for the River Severn and the options and proposals we will promote and secure to protect and enhance stocks.

SFG strongly believes and recommends a Voluntary Byelaw partnership approach and solutions at a time when major improvements are under consideration and in progress in national stock assessment reviews.

The Emergency Byelaws process & three Severn stock revisions

PAAS correspondence with the EA following sight of the Emergency Byelaw Decision Paper and subsequent FOI requests of the 10 year Severn egg deposition (2009 – 2018) estimates revealed that the EA had failed to incorporate the national angler undeclared uplifts for 2015 -18. As a result the 2019 Emergency Byelaws had been presented on invalid assessment of stock with significant under estimated stock in four years requiring a new Decision Paper. The EA acknowledged this by letter of the 16th April 2020 with a commitment to present the revising year estimates, River assessment and Decision Paper at a Formal Consultation in 2020. The EA failed to deliver that commitment to consult with anglers and fisheries (reasons explained as Covid & Severn Floods) and at the 11th hour extended the Emergency Byelaws on the 15th June 2020 for a further year without any prior communication and again on invalid assessments.

PAAS & NWATFCC raised a Formal Complaint against the EA for a series of process failures in the implementation of the Emergency Byelaws and significant errors in stock estimates and interpretation of stock.

Finally in 2021 PAAS made a further request for the 2017-19 annual estimates and received the complete 10 year 2010 - 2019 estimates used in the 2021 Formal Consultation and Technical Case justification.

What became evident was that in these estimates there had been extensive revisions to applied Age Weight tables (again not disclosed). As a consequence estimates in 2013 - 19 years do not correspond with the Severn River 2010 -19 estimates published in national reports on the 6th August 2020.

<u>There have now been four 10 year River Severn assessments in less than two years</u>. The original <u>incorrect</u> 2018 published Severn estimates, the <u>incorrect</u> 2019 Emergency Byelaw estimates, the <u>incorrect</u> amended 2019 Emergency Byelaw estimates and the amended 2021 Consultation Byelaw estimates that we now find do not correspond with the 2019 published estimates.

NWATFCC, PAAS & SFG advise the EA that the most recent of these still has significant error and requires recalculation over the 10 year timeframe of annual estimates and assessments. Please refer to points raised in Analysis of EA Severn stock Technical case.

We therefore ask, will the EA seriously consider SFG alternate proposals (including the revisions to stock estimates) in this Consultation process and as part of the imminent national Review of improvements to stock procedures before framing its recommendations to the Defra minister?

EA & NRW claims & statements ref River Severn stock health

The following statements are used extensively by the EA and NRW in Consultation documents and media releases;

"Severn stocks over the last 30 years have declined at an alarming rate and are unsustainable with no harvestable surplus".

<u>SFG rejects these claims and assertions</u> and refer the EA & NRW to annual EA published angler declared catch returns over the last 30 years (even before correction and uplift for under reporting).

For the River Severn and most E & W rivers angler rod catch is the baseline or reference point on which stocks are assessed.

These show, as Chris Bainger, EA acknowledged at the EA & SFG video meeting on the 1st April that River Severn rod catch figures from 1990 - 2020 (see Annexe 1) have remained relatively consistent over the last 30 years..Even at a time when numbers of anglers filing declared returns and their rod effort days fished have fallen to their lowest levels in 2018 -2020.

<u>However, it is certainly a fact that salmon angler numbers and effort days have declined at an</u> <u>alarming rate in the last 20 years and are now reported as less than 25% of pre 1998 Spring</u> <u>Byelaw levels.</u> Whilst CPUE, Catch per Unit Effort as the other KPI of stock health relative to fishing effort in the last 10 years is at its highest levels compared to pre 2010 catch to unit effort fished.

In fact the 2014 - 2018 five year annual rod catch average (305 salmon in the table below) was higher than the 10 year averages for both 1999 - 2008 and 2009 -18 periods which followed the 1998 national Spring Salmon Byelaw restrictions which had such disproportionate impact on the Severn fishery.

To reiterate; Severn stocks <u>have not</u> declined at an alarming rate in the last 30 years and <u>are not</u> at unsustainable levels.

	EA Fisheries Stats Table 6.19	EA Report Table 12	EA Report Table 8		
	<u>Number of</u> <u>Severn Angler</u> declared returns	EA Angler declared <u>Rod</u> <u>catch</u> before correction	Angler declared <u>rod effort days</u> fished (S & S/T) - mostly salmon on Severn		
1994 - 1997	630	428	13,585	4 year	Pre 1998 Spring Salmon Byelaws
1998 - 2008	317	299	4,849	10 year	
2009 - 2018	302	290	4,141	10 year	
2014 - 2018	272	305	3,720	5 year	
2018	179	183	2,335	1 year	Drought impact
2019	202	161	2,641	1 year	Introduction Emergency Byelaws
2020	158	220	1,839	1 year	Extension of Emergency Byelaws

In the intervening years further corrections to River CL target and systems to predict 5 year forward stock status were introduced and post 2010 many rivers experienced significant changes in ISW & MSW proportions and a noticeable decline in what were consistent one sea winter returning populations.

This was predicted as part of longer (50 - 60 year) cyclical trends of sea warming and cooling and abundance and scarcity of food source in the northern seas, commonly referred to as the impact of the North Atlantic Oscillation. River Severn stocks have historically maintained high levels of MSW components stocks and in this respect has experienced a lower impact than many rivers to the transition in ISW salmon runs.

Is it logical then that E & W use a CL target that was set in the 1990's and lowered by 26% on average in 2004 (for counter intuitive reasons that marine survival rates had more than halved since the 1970's) but then have a Management Target MT for managers "to aim for" and long term Management Objective, MO that river stocks must meet CL in 4 out of 5 years on average?

The system that was devised and introduced in 2004 and updated in 2007 to today's River Classification methodology (a rivers status or Risk/Probability of its stock meeting MO in 5 years time) was never validated, has not been routinely quality

assured in 16 years and given assurance in 2004 because "These results are in broad agreement with the previous compliance scheme".

Rod fisheries have lobbied strenuously for radical reform of this stock conservation system over the last 3 years and made detailed submissions and recommendations in December 2018 to the drafting of the NASCO 2019 - 2024 Implementation Plan for "Improvements to stock procedures and Decision process".

We now have the prospect of these Improvements taking place through the national reviews underway for use of annually revising river Rod Exploitation Rates and the longer 3 year review of the Stock Assessment system & Decision Structure process concluding in 2022. As a principal rod fisheries stakeholder NWATFCC has submitted its full recommendations on behalf of PAAS, CPWF and the national SAAG to the Stock Assessment Working Group.

A critical element of these recommendations is for a removal of the use of Linear Trend line model which generates forecasts of 5 year forward predictions of river stock status The use of this 2004 system of 15 year linear (straight line) trend analysis and forecast predictions of stock has been directly responsible for the high incidence of rivers not aligning with their original 5 year forward stock status predictions.

Over the 2013 - 18 year period NWATFCC tracked reported accuracy of predicted stock status and found these predictions to be correct on average in only 1 in 3 cases. When you consider there are only four River status categories and two of these - PaR and PNaR status assume 90% of the probability range of stock predictions then you have to ask "What is going wrong with River status predictions?" Ivor Llewellyn, Director of the Atlantic Salmon Trust drew attention to this high status reporting failure and need for improvement or alternate methodology in his concluding summary report "Possible Changes to Conservation Limits and Stock Assessment in England" following the national workshop on Stock Assessments in Telford in June 2016.

It is actually a very simple phenomenon and well understood by fisheries managers & anglers alike.

Salmon stock abundance runs in cycles with shorter frequency peaks and troughs. Very few Rivers stocks exhibit or follow a 15 year straight line trend (or the 20th percentile regressed 10 year historic trend of CL attainment which is then cast 5 year forward on that same straight trend line projection).

Using a national trend analysis model that is not Quality Assured when river populations do not behave in the is not QA and almost doomed to failure at the outset as River populations particularly when impacted in recent years by longer term 1SW/MSW stock transitions do not behave in this was.

Please refer to the NWATFCC Annexe 4 - Analysis of the 64 Principal E & W monitored salmon rivers and their reported accuracy. Headline reporting accuracy is detailed below.

			EA &	NRW A	ccuracy of	2013 -	2019 Fi	ve year for	ward I	Predictiv	e Stock St	atus Fo	precastin	g				
		2013			2014			2015			2016			2017			2018	
	2008-5yr	2013 Actual	YES - V	2009-5yr	2014 Actual	YES - V	2010-5ут	2015 Actual	YES - V	2011-5уг	2016	YES - √	2012 -5үг	2017 Actual	YES - V	2013-5yr	2018 Actual	YES-V
	Forecast	Status	NO - X	Forecast	Status	NO - X	Forecast	Actual	NO - X	Forecast	Actual	NO - X	Forecast	Status	NO - X	Forecast	Status	NO - X
ENGLAND TOTAL		21 Y - 21 N	Y - 50 %		15 Y - 27 N	Y - 36 %	0	10 Y - 32 N	Y - 24 %	0	9 Y - 33 N	Y - 21 %		12 Y - 30 N	Y - 29%		17 Y - 25 N	Y - 40%
WALES TOTAL		<u>9Y - 13 N</u>	<u>Y-41%</u>		<u>9Y - 13 N</u>	Y-41%	5	<u>6Y - 16 N</u>	Y-27%	91	4Y - 18 N	<u>Y - 18 %</u>		<u>8Y - 14 N</u>	Y - 36 %		<u>9Y-13N</u>	Y - 41 %
E & W TOTAL		30 Y - 34 N	¥-47%		24 Y - 40 N	Y - 37 %		16 Y - 48 N	Y-25%	1	13 Y - 51 N	Y - 20 %		20 Y - 44 N	Y - 34%		26 Y - 38 N	Y - 41%

The River Wye and NW (Eden, Lune, Border Esk & Ribble) typify what can happen at opposite ends of the spectrum in using 15 year Linear historic and 5 year forward stock projections.

In 2015 the Wye with an improving trend but 10 years of CL failure was predicted in 2020 to be PNaR, Probably not at Risk. Whilst many NW rivers with 8-10 years CL achievement in 2015 had AR, At Risk or PaR Probably at Risk forecast with 15 year trend line assessments that showed stock to be nearing extinction in 2020. What has happened in 2019 & 2020 is actually the reverse of EA & NRW stock predictions with Wye stocks and rod catches falling to some of their lowest on record whilst NW experiencing some of their best runs and vastly improved rod catches.

Can rod fisheries be expected to have confidence in a system that at best accurately predicts only 1 in 3 correct status classifications and on which 10 year regulatory measures are to be enforced?.

Should the EA & NRW be proposing 10 year measures using potentially invalid and suspect river status predictions? NWATFCC & SFG ask that the EA use caution in reaching decisions with the national RER stock review pending.

Can rod fisheries be expected to have confidence in a system that at best accurately predicts only 1 in 3 correct status classifications on which 10 year regulatory measures are to be enforced?.

2. Angler Declared rod catch and use of river and national angler uplifts

As the first stage in annual River stock estimates (rod based rivers without validated counter & whole river run estimates) rod declared catch is raised to correct for under reported catch. Historically a 1.1 factor or 10% uplift was applied to under reported rod catch on assumptions that 90% of migratory rod catch returns were received by post in the 1990's and early 2000's and processed for stock estimates. In 2015 anglers and regional rod fisheries representatives of the SAAG were informed the new On-line reporting system was responsible for missing processing anglers returns causing a significant error in angler report catch and as a result higher uplift values were used for catch estimates between 2015 - 2018.

NWATFCC, PAAS, CPWF & SFG have been informed that actually similar levels of anglers returns were not being received or processed between 2010 - 2014 but was not disclosed at the time and no appropriate correction made. In total Between 36 - 42% of angler returns were not received or processed in England & Wales rivers for those years and for the River Severn these amount to 5 of the 10 year Consultation assessment years. In addition we find that the EA & NRW reverted to using the 1.1 default in 2019 when an improved 76% of returns was reported received and processed. This is still some margin from the 90% target. The EA have been unable to confirm what rivers they used to validate the use of 1.1 default. The Wye independent reliable catch showed 1.4 under reported catch in 2019 whilst the four major NW Rivers Eden, Ribble, Derwent & Border Esk an average of 1.69 was required.

	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
EA applied Angler under reported catch uplift	1.1	1.1	1.1	1.1	1.1	1.36	1.27	1.28	1.51	1.1
Reported % Angler license returns received	64%	62%	61%	63%	58%	58%	55%	59%	66%	76%

This indicates published stock estimates in 6 of the 10 years of the River Severn Consultation Byelaw estimates require correction and revision.

3. Revisions to Age Weight proportions of 1SW/MSW salmon and female contribution to stock estimates

The Technical Case justification - Page 18, Section 2 - Salmon Stock Assessment on <u>Fish Weight</u> gives an inaccurate and misleading description of one of the most critical areas of the Severn stock estimates - the distribution of rod catch weights and apportionment to 1SW or MSW stock. Critical because 1SW apportioned stocks are estimated as 29.8% females and MSW as 81.6%. Incorrect apportionment in this area has a major impact on the final year egg deposition.

In the last 2 years the EA have produced FOUR different calculations of 2009 - 2018 Assessments;

- 1. the Original 2018 high Fecundity 2018 published assessments which were revised to V1
- 2. V1 amended original estimates with lower Fecundity & changed Age Weight tables with variable in 2009-12 years and suppressed MSW proportions in the Fixed Age Weight 2015-18 years
- 3. V2 amended V1 for reasons that the 2015-18 years had incorrectly underestimated angler uplifts values applied.
- *4.* V3 a further amendment for reason that they explain "the Severn Specific yearly weight distribution data including fro previous year, as a more realistic description on Severn salmon weights".

Please refer to Annexe 2 - analysis of actual Age Weight Tables applied in the V1, V2 & V3 years, gained from FOI requests by PAAS and the Annexe 3 - analysis of impact on 1SW/MSW and Total female contribution in V1,V2 & V3 annual estimates of CL egg epositions.

SFG are unable to understand how the EA can state the prior 2018 annual Severn Salmon stock Assessment calculations did not incorporate fish weight data in this way (the standard national method of stock assessment) when the Annexe 2 tables show they actually did from annotated notes in the EA 1996 -2012 Severn assessments tables referencing post 2002 year calculations as follows; The % grilse in the catch is estimated from weight composition data -submitted as part of the catch return - and the application of a national age-weight key (derived from trap sampled fish on the Welsh Dee). Severn specific age composition data may have been used in earlier years.

We are unable to find an explanation for "Fixed Age Weight" proportions being applied to the 2013 - 18 year Emergency Byelaw estimates effectively suppressing MSW proportions, female contributions and total egg depositions. When and where were these estimates derived and if they were Severn Specific estimates, have they been reviewed since hose early years ?

How have the EA been able to make a third revision to these estimates which;

- 1. does not agree with the published 2019 assessments of CL estimates released in August 2020 and now claims to use more realistic historic Severn Specific Salmon weight data?.
- 2. make the two Emergency Byelaw estimates even further underestimated with variance to the 2019 published MSW %. See chart below ?

Revisions made to reported MSW proportions of stock estimated in the national 2010 - 2019 published estimates and the variance with the estimates used in the Emergency Byelaws 2010 - 2018.

	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
EA - MSW % - Published Table 19	59%	74%	75%	79%	77%	79%	82%	77%	79%	91%
EA - MSW % - Emergency Byelaw estimates	50%	75%	75%	73%	63%	60%	64%	63%	67%	?
% variance in to published 2019 estimates	9%			6%	14%	19%	18%	14%	12%	?

4. Use of "fixed" Rod Exploitation Rate, RER variable

RER calculation is the third critical stage in estimating whole river run size where separate 1SW & MSW factors are used to multiply the 1SW & MSW rod caught estimates (after uplifts) to reach the full river spawning run before other adjustments. Rod exploitation rates vary considerably from year to year due to seasonal factors such as rod effort, river conditions, run timing etc, as evidenced by EA Index river estimates from key regional counter sites. In 2004 with the introduction of the new EA stock methodology for assessing river stocks and stock status the EA committed to introduce a procedure for annually revising RER, stating;.

For rivers without traps or counters, the usual procedure for estimating egg deposition derives run size from rod catch using estimates of exploitation, which do not take into account annual changes in fishing effort. In years when effort was low - such as the 'lowflow' year of 2003 and the Foot-and-Mouth Disease year of 2001 - **this approach has probably resulted in rod exploitation being over-estimated on a number of rivers and hence escapement and egg deposition being under-estimated.** <u>An improved</u> **procedure is being developed by the Environment Agency to take account of annual changes in fishing effort, as well as partitioning effort between salmon and sea trout** (no distinction is currently made between these species when **reporting fishing effort).**

The RER used for the River Severn remains a "fixed" estimated average 11.1 % or factor of .111. For historic estimates as far back as the introduction of the 2004 Severn Salmon Action Plan this has been applied at a 1SW rate of 9.9% or factor of 0.099 and MSW of 13.9% or factor.139.

In reality when you apply the factors to actual Age Weight 1SW & MSW proportions of annual stocks the high Severn MSW proportions make the actual average applied RER not 11.1% but between 12.0 - 13.0% !

So why has the River Severn and many other rivers stock assessments been compromised and cast in stone for 16 years with fixed RER's applied when the methodology, Index River interpretation of RER and the EA's committed to introduce annual revising RER was clearly a priority.

Emeritus Professor Brian Revel who is an important contributor to the SFG response and has corresponded at length with Ian Davidson of NRW has modelled and studied the correlation and impact of the key RER factors on historic rod catch on the Severn, Dee and NW rivers and concludes that there is a strong correlation between river conditions, angler effort, run timings and resulting rod catch.

The exceptional circumstances in 2018 prompt the question why the Severn those 2018 assessments have not been RER adjusted? A year when the two operational E & W Index River counters, Welsh Dee and Tamar recorded published RER estimates that fell by 50% on 2017 estimates for reason of a combination of prolonged drought conditions reducing angling effort and catch.

We still await the 2019 national RER review where we had strong indications that a new system would inform the 2018 assessments (Brian Shields email of 15.02.19 to myself and Dave Hudson letter of 16.04.20 to PAAS).

Importantly, how does the Severn and national Fisheries team intend to take account of the alarming decline of angler numbers and rod effort in the RER review and introduction of the new methodology?

In this Consultation response we have included corrections for these factors in our revising estimates of underestimated stocks.

5. Use of outdated In River & C & R mortality estimates

SFG, PAAS & NWATFC do not accept the EA national mortality estimates applied to the River Severn and other English & Welsh rivers (10% In River mortality and 20% C & R mortality). Reference is made to this in Appendix 2 Section and refer to the recent Lennox et al studies:

Pan-Holarctic assessment of post-release mortality of angled Atlantic salmonSalmo salarRobert J. Lennox a,b, *, Steven J. Cooke a , Colin R. Davis, PaddyGargan c , Lorraine A. Hawkins d , Torgeir B. Havn b , Martin R. Johansen b , Richard J.Kennedy e , Antoine Richard f , Martin-A. Svenning g , Ingebrigt Uglem b , John Webb,Frederick G. Whoriskey h , Eva B. Thorstad b

Recreational Atlantic salmon Salmo salar fisheries are culturally and economically important, but confronted with global population declines, catch-and-release has frequently replaced harvest in these fisheries. Many studies have evaluated the effects of catch-and-release angling on Atlantic salmon; however, studies typically focused on a single system and had small sample sizes. Using data from Atlantic salmon catch-andrelease studies conducted in 12 rivers throughout the pan-Holarctic range of wild Atlantic salmon, we modeled delayed mortality data using logistic regression. The model was based on 512 salmon (75 \pm 15 cm TL) captured and released with electronic tags (i.e. radio or acoustic transmitters), which permitted the determination of fish fate after release (delayed mortality). The percentage of salmon categorized as survivors after release was high (93%). Salmon with longer body length tended to be played for longer durations (R2 = 0.60) but there was no significant effect of fish length or playing time on mortality. Water temperature at capture emerged as a significant predictor of delayed mortality of salmon. Individuals captured by flies had significantly higher survival (96%) compared to lure (86%) and natural bait (85%) caught salmon. Data from throughout the range of Atlantic salmon confirm that fish captured by anglers adhering to best practices have high probability of surviving catch-and-release angling. © 2017 Published by Elsevier Ltd.

The EA's own comprehensive 2017 Report on the *Impact of catch and release angling practises on survival of salmon* does not provide a definite mortality rate attributable to angling methods but recognises they are different for a multitude of reasons and that other factors such as water temperature and the anglers attention to good practise in returning salmon are hugely influential in survival rates. SFG and Severn anglers more aware of this and keen to play their part.

SFG & NWATFCC therefore maintain the use of a fixed 20% C & R mortality in stock estimates does not accurately reflect changing and more informed angler observance of improved handling techniques or changing method proportions of bait, spin and fly caught methods.

6. EA changes to Fecundity estimates

The EA's decision to change 42 years use of River Severn historic Fecundity estimates based on MSW females with average weight of 7.3kg producing 12,913 eggs (1,769 eggs per kg) and 1SW estimates of average weight of 2.9kg producing 5.130 eggs (1,769 eggs per kg) appears to have been taken overnight effectively consigning earlier annual estimates to the bin. At a sweep in June 2019 in its Emergency Byelaw Decision Paper the EA were able to reduce egg deposition estimates of "stocks" by 50% or more. The EA explaining this as new emerging evidence when in fact the introduction of national Welsh Dee derived Age Weight tables reduced MSW proportions and females numbers and of these lowered fecundity values did the rest.

However the explanation that the source of the original Severn fecundity and average 1SW & MSW weight characteristics was not known, is and has been known to rod fisheries and originates from studies of hen salmon caught in the Severn estuary putcher fishery.

The question that has to be asked both in this Severn Consultation and at a national level, is how representative are the fecundity table values of Welsh Dee hen salmon in comparison to other river mid-point lb fish weights. And importantly are there other rivers or Index Rivers that provide comparative fecundity estimates?

7. River stock status classification, alternate status & Decision models, E & W Decision Structure process and 2019 National Byelaws

Whilst the use of 15 year linear predictions of stock status have a high degree of uncertainty there are systems and procedures in use that provide a precise assessment of historic performance to CL. Rod fisheries recommended and proposed the Scottish system in its submission to the NASCO IP drafting and national assessment review. The Scottish model of annual reviews of river categorisation which was introduced in 2018 after Consultation is clear simple and statistically precise; **A river`s 5 year mean or average CL attainment to egg deposition target.**

It is statistically precise, allows MO and CL to merge to a single CL attainment target. Clear with no uncertainty over forward predictions, has a built in damper warning mechanism, maintains existing CL and annual estimates processes and enables an annual C & R revision facility. Adoption would harmonise UK mainland jurisdictions with obvious operational benefits whilst allowing the facility for future flexing of C & R target breakpoints. An analysis of three models and the current model for all 42 English Rivers was prepared in March 2018 (using 5 year 2012 - 2016 CL attainment data) was provided by rod fisheries in its submissions to NASCO & the Stock Assessment Review. Annexe 5 - Option 2 is the Scottish model. Meanwhile the current Severn River stock status predictions which are a PaR - Probably at Risk in 2019 and 5 year forward 2024 require the fishery to meet a 90% C & R target. These are clearly set out in the E & W Decision Structure process table and notes, NASCO approved guidance and the 2019 national Salmon Byelaws. If it fails to do so then other more stringent measures including mandatory 100% C & R or even closure of the fishery should be considered.

The 2019 National Salmon Byelaws do not include method or hook restrictions and the EA

The EA's interpretation of events around the 2012 discussions involving the Severn Rivers Trust and other interests together with the more recent and rushed 2019 pre Emergency Byelaw meetings differ from the Severn Fisheries representatives meeting notes and observations on the central question of when higher or specific 90% C & R targets were aired and agreed.

It is clear SFG representatives did propose 90% C & R at the pre Emergency Byelaw meetings but this was turned down. Severn Fisheries representatives did not attend the February NRW - LFG (including EA) meeting on the proposed Severn Byelaws in Wales when only 2 English rod fisheries representatives were present because SFG were informed that the EA is the lead authority in the Severn catchment and the appropriate Byelaw measures regulations would be an Agency led decision.

The SFG propose and maintain the EA meet its commitment to adhere and apply National Decision Structure policy and not be swayed by NRW overtures to adopt the "All Wales" measures that have provoked serious unrest in fisheries circles and unintended consequences.

8. SFG corrections to historic assessments - including critical 2018 & 2019 years

The following adjustments are highlighted and illustrated as accumulated step corrections to the following year published estimates for reasons explained in points 2 & 4.

SFG correction	ns to his	toric ass	essments	- includi	ng critical	2018 & 2	2019 years				
	2010	2011	2012	2013	2013	2014	2015	2016	2017	2018	2019
Angler declared rod catch under reporting % uplift required above default 1.1	20%	20 %	20%	20%	20 %	20%	variable	uplift	applied	years	20 % ?
Rod exploitation rate uplift required for use of fixed 11.1% estimate. 2018 & 2019 due to Emergency Byelaws, river flow, depressed rod effort										40 %	30%
Correction for stated 11.1 % RER used when actual weighted average was 12 - 13%	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%
Minor adjustment for C & R mortallity revision											
Total accumulated factor uplift	1.32	1.32	1.32	1.32	1.32	1.32	1.1	1.1	1.1	1.54	1.72

9. Use of best available data to inform Byelaw review and conservation measures

Taking into consideration the clear concerns that have been drawn to the EA's attention with incorrect use of variable estimates in stock calculations and that a RER national

review is pending and the three year national review of Improvements to Stock reporting procedures & Decision process is underway, SFG is quite clear that the EA stock estimates and decisions are not being made as they claim "using best available data".

SFG have analysed and prepared revisions to the current under estimates of Severn stock in the table above that significantly change historic annual estimates and the EA & NRW assessment of Severn stocks. We request further discussion on these recalculations as a priority.

We believe these better estimate historic and current stocks and with modelled projections warrant further consideration together with the NASCO and E & W guidelines for Voluntary 90% C & R proposals for managing the rod fishery with PaR stock status.

10. Supplementary data – Tanat Counter, Juvenile survey data & spawning redd counts ?.

With the Consultation document placing heavy reliance on Supplementary data providing evidence of unsustainable stocks or potential shortfalls in future stock from juvenile recruitment the Consultation document provided very little information or data and what was provided was incomplete.

Historically spawning redds counts were undertaken by Fisheries officers across the whole catchment giving a clear indication of stock health and considerable yearly variations. SFG have that EA from 1975 - 2004 when presumably counts ceased. These comprised yearly summaries of Severn, Vyrnwy, Banwy, Tanat, Teme and tributaries. So there is no recent red count data.

EA concerns over trends in Severn juvenile numbers are refuted clearly in Appendix 2.Section VIII

The Tanat counter itself also provides upstream adult counts on what is an important tributary of the Vyrnwy, itself an important tributary of the River Severn. The data provided is incomplete with two recent years (2016 & 2019) suffering long and major power outages across the peak migration periods August - November. With 2017 - 2018 reporting low year counts whilst the years 2010 - 2015 were consistently healthy and with rod catches and CPUE presenting a different interpretation of stock it is difficult to see how the fisheries team place so much weight on the a single tributaries incomplete data.

Conclusion re Rod Fishery Management Options

As I review the EA Rod Options 1 - 3 and stated Advantages & Disadvantages I am struck by the repetition of statements of stock decline which are incorrect and not substantiated and the bias and pre-determination of the Options analysis. I refer to a number of these;

1) Severn salmon stock has no harvestable surplus. Even low level exploitation through voluntary C&R will at best delay, or at worst prevent recovery of salmon stock.

1) Recognises that salmon stocks are in decline and are currently at unsustainable levels with a need to restore stocks to a favourable status as soon as possible.

2) C&R survival may be severely compromised if necessary changes to angling methods are not implemented quickly and consistently.

1) Voluntary implementation of rod and line angling measures are unlikely to be consistently applied in a timely manner

1) Previous attempts in 2012 to increase the voluntary level of C&R to >90% within the Severn salmon rod fishery have failed to achieve the desired level of C&R. Severn rod fishery records one of the lowest voluntary C&R rates in E&W.

3) Risk of false reporting by anglers on declared catch (already an issue) which may falsely indicate stocks are healthier than they are.

5) NRW are likely to seek to implement mandatory rod fishing measures in the upper Severn catchment which will be inconsistent with a voluntary approach in the lower catchment.

The Options analysis appears to be missing very obvious but overlooked disadvantages to Options 2 & 3.

These are possibly unintended consequences but nevertheless key points in the future management and cooperative approach SFG are seeking for the fishery;

- $\sim~$ Further exodus of anglers will open the waters to poaching. How does the 10% retention rate compare with illegal killing by poachers and unlicensed anglers.
- \sim Can the EA & NRW enforce mandatory C & R and method restrictions.
- $\sim~$ How can the fisheries enforcement team police a bait ban when those methods are used by other anglers targeting other fished for species chub, barbel & trout.
- ~ Salmon anglers presence acts as a deterrent to avain predators.
- Salmon anglers provide intelligence and notification of other river incidents (pollution etc) particularly in the March to June months of the coarse close season.
- The 2 & 3 Options will alienate anglers and erode cooperative partnership working that should be fostered e.g. voluntary redd count programmes, river enforcement liaison.

SFG and its salmon anglers can be trusted to act responsibly and conserve stocks. They do return the greater majority of fish caught. For instance in 2018 when 163 salmon reported caught, 34 were killed of which 20 were retained by anglers who only caught a single fish and the remaining 14 salmon by anglers who caught and retained two or more. Of the 129 returned salmon caught the majority were by 45 anglers who returned all their catch. By comparison, Severn anglers retention rate is almost identical to the River Tyne and can be improved with joint cooperation.

The Severn in not like other major rivers. It frequently runs with high sediment load over much of its length. The river offers very few fly fishing opportunities with most reaches not able to be waded effectively to present a fly. Option 3 will consign 90% of the river to a single method approach. Is that what the EA intends in this process?

The Option 3 combined mandatory C & R and method restrictions will have serious consequences for the salmon fishery and lead to the predicted and unintended consequences observed in Wales following the 2020 All Wales byelaws.

The EA is the lead regulatory body for the Severn catchment and rod fisheries look to the Agency to take into consideration the evidence of reported error in stock estimates and incomplete and missing supplementary data within this response.

We firmly believe that Option 1 (90% Voluntary C & R and Voluntary angling method restrictions) is the correct approach and promotes cooperative partnership working between the Agency and its fisheries at a time when fisheries team resources are stretched and we have the improvements to stock assessment on the horizon.

Option 1 is the EA national strategy delivered and agreed in the 2019 Salmon Byelaws, is the Decision Structure measure for a Probably at Risk river designation for England & Wales and as directed by NASCO policy.

Thank you for your time and consideration in assisting with this response.

Mike Ashwin

Chair NWATFCC North West Fisheries Angling Trust Consultative Council & SFG representative The Barn, Skirwith, Penrith, Cumbria CA10 1RH. Tel 01768 879047

Annexe 1 - Analysis of River Severn KPI's

Short analysis of River Severn Rod angler licence uptake, rod effort, rod catch, uplift corrections, 1SW/MSW %, ave salmon weight, ave Fecundity, Egg deposition estimates - millions.

	<u>Number of</u> <u>Severn Angler</u> declared returns	EA Angler declared <u>Rod</u> <u>catch</u> before correction	Angler declared rod effort days fished (S & S/T) - mostly salmon on Severn	CPUE Average Number of salmon caught for every 100 days fished effort	% of rod & net license returns received & processed	national rod catch uplift applied	Severn Corrected uplifted catch	MSW % based on angler declared weights	MSW % Table 19 Salmon Fisheries Report	1SW run size after mortality & rod kill - RER 9.91%	MSW run size after mortality & rod kill - RER 13.8%	Total River run after mortality & rod kill	1SW females 29.8%	MSW females 81.6%	Ave fecundity all females	Total million eggs CL is 12.85 million	Ave Severn salmon kg weight from declared catch
1990		357				1.10	393	100%		-	2,216	2,216	-	1,808	12,914	23.35	
1991		324				1.10	356	94%		188	1,883	2,071	56	1,536	12,639	19.84	
1992		287				1.10	404	46%	61%	1,800	1,055	2,855	536	861	9,926	11.12	
1993		336				1.10	638	81%	57%	1,024	2,904	3,928	305	2,370	12,026	30.59	
1994	668	555	13,596			1.10	610	68%	61%	1,620	2,339	3,959	483	1,909	11,343	24.65	
1995	655	442	14,893			1.10	507	93%	85%	298	2,659	2,957	89	2,169	12,608	28.02	
1996	526	643	13,056			1.10	707	87%	87%	760	3,473	4,233	226	2,834	12,338	36.59	
1997	709	312	14,886	1.7		1.10	343	83%	83%	482	1,608	2,090	144	1,312	12,145	16.94	
1998	593	186	11,493	1.3		1.10	203	67%	66%	552	772	1,324	164	630	11,302	8.13	
1999	376	185	7,024	2.1		1.10	202	65%	65%	590	739	1,329	176	603	11,155	7.79	
2000	347	327	5,373	4.9	90% ?	1.10	360	41%	41%	1,754	832	2,586	523	679	9,529	8.78	
2001	260	273	4,084	5.4		1.10	300	72%	70%	695	1,200	1,895	1,067	216	11,599	14.88	
2002	308	195	4,720	3.5		1.10	214	47%	57%	768	686	1,454	234	599	10,725	8.93	
2003	352	333	5,302	5.2		1.10	366	69%	68%	941	1,424	2,365	288	1,252	11,343	17.65	
2004	370	319	4,633	5.5		1.10	351	65%	65%	1,009	1,291	2,300	312	1,150	11,244	16.44	4.80
2005	327	430	5,221	6.6		1.10	473	68%	68%	1,255	1,813	3,068	393	1,620	11,395	22.94	
2006	267	356	4,124	6.6		1.10	392	63%	63%	1,188	1,399	2,587	369	1,252	11,138	18.05	
2007	311	280	3,800	5.7		1.10	308	44%	44%	1,413	774	2,187	436	693	9,914	11.19	4.30
2008	357	294	4,211	5.8		1.10	323	68%	67%	872	1,229	2,101	270	1,088	11,368	1,544	4.60
2009	413	213	4,819	3.6		1.10	233	68%	68%	619	893	1,512	218	798	6,435	6.54	
2010	337	235	5,052	4.3	64%	1.10	257	50%	59%	1,060	723	1,783	374	648	6,166	6.30	4.45
2011	352	362	5,105	6.5	62%	1.10	397	75%	74%	819	1,682	2,501	292	1,518	6,437	11.65	4.76
2012	285	249	3,521	6.3	61%	1.10	274	75%	75%	566	1,166	1,722	206	1,074	6,942	8.89	5.32
2013	274	332	4,211	7.9	63%	1.10	366	73%	79%	804	1,518	2,322	293	1,386	7,114	11.95	5.48
2014	282	211	4,198	5.0	58%	1.02	209	63%	77%	630	749	1,379	235	694	6,593	6.13	4.91
2015	278	469	4,584	9.0	58%	1.36	535	60%	79%	2,101	2,161	4,262	733	1,985	6,357	17.53	4.12
2016	297	334	3,611	9.5	55%	1.27	428	64%	82%	1,272	1,547	2,819	474	1,433	6,507	12.41	4.82
2017	322	330	3,875	8.0	59%	1.28	417	63%	77%	1,276	1,488	2,764	475	1,376	6,590	12.20	4.97
2018	179	183	2,335	7.8	66%	1.51	246	67%	79%	665	936	1,601	149	869	7,415	7.55	4.96
2019	202	161	2,641	6.1	76%	1.10			91%								5.96
2020	158	220	1,839														

	Annexe 2 - Age Weight Tables used in V2 - Revised Emergency Byelaws and V3 - 2021 Byelaw Consultation																		
EA A	pportion	ment of N	NSW by w	eight ran	ge mid-po	oints Bas	ed on dat	ta up to 2	018 Asses	sment - \	/2 is Revi	sed Eme	rgency By	elaws &	V3 is 2021	Consult	ation Bye	laws	
2009	2009	2010	2010	2011	2011	2012	2012	2013	2013	2014	2014	2015	2015	2016	2016	2017	2017	2018	2018
V2	V 3	V2	V 3	V2	V 3	V2	V 3	V2	V 3	V2	V 3	V2	V 3	V2	V 3	V2	V 3	V2	V 3
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	1.00	0.01	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.14	0.14	0.01	0.00	0.26	0.00	0.01	0.02	0.05	0.00	0.05	0.00	0.05	0.05	0.05	0.00	0.05	0.08	0.05	0.00
0.46	0.46	0.00	0.01	0.19	0.10	0.14	0.01	0.02	0.01	0.02	0.00	0.02	0.01	0.02	0.41	0.02	0.04	0.02	0.25
0.38	0.38	0.11	0.00	0.47	0.26	0.29	0.14	0.12	0.09	0.12	0.31	0.12	0.31	0.12	0.31	0.12	0.21	0.12	0.30
0.45	0.45	0.21	0.11	0.69	0.19	0.42	0.29	0.35	0.46	0.35	0.28	0.35	0.57	0.35	0.73	0.35	0.46	0.35	0.68
0.53	0.53	0.44	0.21	0.67	0.47	0.48	0.42	0.41	0.43	0.41	0.80	0.41	0.75	0.41	0.80	0.41	0.62	0.41	0.61
0.72	0.72	0.84	0.44	0.93	0.69	0.82	0.48	0.74	0.69	0.74	0.86	0.74	0.86	0.74	0.88	0.74	0.93	0.74	0.93
0.86	0.86	0.87	0.84	0.97	0.67	0.92	0.82	0.86	0.88	0.86	0.93	0.86	0.93	0.86	0.95	0.86	0.96	0.86	1.00
0.83	0.83	0.96	0.87	0.97	0.93	0.95	0.92	1.00	0.95	1.00	0.91	1.00	1.00	1.00	0.99	1.00	1.00	1.00	1.00
0.94	0.94	0.98	0.98	1.00	0.97	0.98	0.95	1.00	1.00	1.00	0.98	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
0.96	0.86	0.99	0.99	1.00	0.97	0.99	0.98	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1.00	0.83	0.99	0.99	1.00	1.00	1.00	0.99	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1.00	0.94	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1.00	0.96	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Annexe 3 - analysis of impact on 1SW/MSW & females ref EA - Original & 3 Revisions to 2018 & 2019 - 10 year Assessments

Page 51 of 71

EA - River Severn Egg deposition estimates Revisions (Original, V1, V2 & V3) with CL attainment in Millions (CL - 12.85 million) & 1SW/MSW Females & MSW %												
		2000	204.0	2014	2042	2042	204.4	2045	204.0	2047	204.0	2010
		2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Original 2009 - 2018	estimates	11.31	11.32	20.67	14.51	20.00	12.7	34.75	25.14	22.80	10.11	
Source of Fecundity	y values "unknown"	- Average N	ISW weight of	7.3kg - 12,913	eggs & Ave	erage 1SW o	f 2.9kg - 5,130) eggs				
1SW Females		188	268	256	177	199	136	358	205	?	88	
MSW Females		801	770	1499	1053	1470	930	2548	1865	?	748	
Total females		989	1038	1755	1230	1669	1066	2906	2070	?	836	
MSW %		81%	74%	85%	86%	88%	87%	88%	90%		89%	
V1 -Emergency 2009	9 - 2018 estimates	6.54	6.3	11.65	8.85	11.95	6.13	14.17	10.33	10.47	5.49	
Revised Fecundity	(national tables) <mark>wit</mark>	h Age weigh	t tables deter	mining 1SW &	MSW prop	ortions by w	eight - Varia	ble tables 20	09 -12 and Fi	xed 2013 - 18		
Incorrect 2015-18 ar	ngler declared defau	ılt 1.1 used										
1SW Females		218	374	292	206	293	235	625	395	407	181	
MSW Females		798	648	1518	1074	1386	694	1604	1192	1180	632	
Total Females		1016	1022	1810	1280	1679	929	2229	1587	1587	813	
MSW %		78%	63%	84%	84%	83%	74%	72%	75%	74%	78%	
V2 - 2019 Published	2010 - 2019 estimate	25	6.30	11.65	8.85	11.95	6.13	17.48	12.46	12.20	8.48	6.53
Revised Fecundity	(national tables) as \	/1 -with Age	weight tables	determining	ISW & MSV	V proportio	ns by weight	- Variable tak	les 2009-12	and Fixed 20	13 - 18	
			with Corrrect	ion from 1.1 to	o the nation	al 2015-18 d	lefault - 2015	- 1.36, 2016	- 1.27, 2017	- 1.28, 2018	- 1.51	
1SW Females		218	374	292	206	293	235	773	474	475	249	
MSW Females		798	648	1518	1074	1386	694	1985	1433	1376	869	
Total Females		1016	1022	1810	1280	1679	929	2758	1907	1851	1118	
MSW %		78%	63%	84%	84%	83%	74%	72%	75%	74%	78%	
V3 - 2021 Consultati	ion - 2010 - 2019	6.53	6.30	11.65	8.88	12.25	7.11	19.11	13.76	13.08	8.46	6.53
Revised Fecundity	& reverting to the hi	storic Severr	Specific year	ly weight distr	ibution dat	a - Variable	1SW & MSW	proportions	by lb class ca	tch weights		
1SW Females		217	374	292	206	228	160	419	231	297	172	48
MSW Females		798	648	1518	1074	1496	925	2589	1894	1695	1176	855
Total Females		1016	1022	1810	1280	1724	1085	3008	2125	1992	1348	903
MSW %		78%	63%	84%	84%	87%	85%	86%	89%	85%	87%	95%

Annexe 4 - EA/NRW Accuracy of 2013 - 2018 Five Year Forward Forecasting Predictions

			EA &	NRW Acc	uracy of 201	3 - 2019	Five year	forward Pre	dictive	Stock Stat	tus Foreca	sting						
		2013			2014			2015			2016			2017			2018	
	2008-5yr	2013 Actual	YES - 🗸	2009-5yr	2014 Actual	YES - V	2010-5yr	2015 Actual	YES - 🗸	2011-5yr	2016	YES - 🗸	2012 -5yr	2017 Actual	YES - 🗸	2013-5yr	2018 Actual	YES - 🗸
	Forecast	Status	NO - X	Forecast	Status	NO - X	Forecast	Actual	NO - X	Forecast	Actual	NO - X	Forecast	Status	NO - X	Forecast	Status	NO - X
NE		4Y-1N			1Y - 4N			2 Y - 3 N			1 Y - 4 N			2 Y - 5 N			3 Y - 2 N	
Coquet	NaR	NaR	1	PNaR	PaR	X	NaR	PaR	Х	NaR	PaR	X	NaR	PaR	X	PNaR	PaR	NO - X
Tyne	NaR	NaR	1	NaR	PNaR	X	NaR	PNaR	Х	NaR	PNaR	X	NaR	PNaR	X	PNaR	PNaR	YES - 🗸
Wear	NaR	NaR	1	NaR	PnaR	х	NaR	PNaR	Х	NaR	PNaR	X	NaR	PNaR	X	NaR	PNaR	NO - X
Tees	AR	AR	1	AR	AR	1	AR	AR	1	AR	AR	1	AR	AR	1	AR	AR	YES - 🗸
Esk - Yorks	NaR	PaR	Х	PNaR	PaR	X	PaR	PaR	1	PNaR	PaR	Х	PaR	PaR	1	PaR	PaR	YES - 🗸
Southern		2 Y - 0 N			2 Y - 0 N			2Y - 0 N			1 Y - 1 N			1 Y - 1 N			1Y-1N	
Test	PaR	AR	Х	PaR	PaR	\checkmark	PaR	PaR	х	PaR	PaR	1	PaR	PaR	1	AR	PaR	NO - X
Itchen	PNaR	PaR	X	PaR	PaR	1	PNaR	PNaR	1	PNaR	PaR	X	PNaR	PaR	X	PaR	PaR	YES - 🗸
sw		10 Y - 10 N			7Y - 13N			6 Y - 14 N			5 Y - 15 N	I		5 Y - 15 N			7 Y - 13 N	
Avon- Hants	AR	AR	1	AR	PaR	X	AR	PaR	х	AR	PaR	X	AR	PaR	X	PaR	PaR	YES - 🗸
Stour	AR	AR	\checkmark	AR	AR	\checkmark	AR	AR	1	AR	AR	1	AR	AR	1	AR	AR	YES - 🗸
Piddle	AR	AR	1	AR	AR	1	PaR	PaR	1	PNaR	PaR	X	PaR	PaR	1	AR	PaR	NO - X
Frome	PNaR	PaR	X	PNaR	PaR	X	PNar	PaR	X	NaR	PaR	X	PNaR	PaR	X	PaR	PaR	YES - 🗸
Axe	AR	AR	1	PaR	PaR	\checkmark	AR	PaR	х	PaR	PaR	\checkmark	PaR	AR	X	PaR	AR	NO - X
Exe	PNaR	PNaR	1	PNaR	PaR	X	PNaR	PaR	X	NaR	PaR	X	NaR	PaR	X	PaR	PaR	YES - 🗸
Teign	PNaR	PNaR	1	PNaR	PaR	X	PNaR	PaR	х	PNaR	PaR	X	PNaR	PaR	X	PNaR	PaR	NO - X
Dart	PaR	AR	Х	PaR	AR	X	PaR	AR	х	PNaR	AR	X	PNaR	AR	X	PaR	AR	NO - X
Avon- Devon	NaR	AR	Х	PNaR	PaR	X	PaR	PaR	1	PaR	PaR	1	PaR	PaR	1	PaR	PaR	YES - 🗸
Erme	AR	AR	1	PaR	PaR	1	PaR	AR	х	PaR	AR	X	PaR	PaR	1	PaR	PaR	YES - 🗸
Yealm	PaR	AR	Х	PaR	AR	X	PaR	AR	х	PaR	AR	Х	PNaR	AR	X	PaR	AR	NO - X
Plym	PaR	AR	Х	AR	PaR	X	AR	AR	1	PaR	AR	Х	PaR	AR	X	PaR	PaR	YES - 🗸
Tavy	PaR	AR	Х	PaR	AR	х	PNar	PaR	Х	PNaR	AR	X	PNaR	PaR	X	PaR	PaR	YES - 🗸
Tamar	PaR	PaR	1	PaR	PaR	1	PaR	PaR	1	PaR	PaR	1	AR	PaR	X	PaR	PaR	YES - 🗸
Lynher	PNaR	PNaR	1	PNaR	PaR	х	NaR	PNaR	х	PNaR	PaR	X	PNaR	PNaR	1	PNaR	PaR	NO - X
Fowey	NaR	NaR	х	NaR	PNaR	х	NaR	PNaR	х	PNaR	PaR	X	PNaR	PaR	х	PNaR	PaR	NO - X
Camel	NaR	PNaR	Х	NaR	PaR	X	NaR	PaR	X	NaR	PaR	X	PNaR	PaR	X	PaR	PaR	YES - 🗸
Taw	PNaR	PaR	х	PNaR	PaR	X	PNaR	PaR	X	PNaR	PaR	X	PNaR	PaR	X	PaR	PaR	YES - 🗸
Torridge	PaR	AR	X	PaR	PaR	1	PNaR	PaR	X	PaR	PaR	1	PNaR	PaR	X	PaR	PaR	YES - 🗸
Lyn	PNaR	PaR	X	PaR	PaR	1	PaR	PaR	1	PNaR	AR	X	PNaR	PaR	X	PaR	PaR	YES - 🗸

Page 53 of 71

MIDLANDS		0 Y - 1 N			1Y-0N			0Y - 1N			0 Y - 1 N			0Y-1N			1Y-0N	
Severn	PNaR	PaR	x	PaR	PaR	x	PaR	PNaR	X	PaR	PNaR	x	PaR	PNaR	X	PaR	PaR	YES - 🗸
NW		5 Y - 9N	Y - 36%		4 Y - 10 N	Y - 29%		0Y - 14N	Y- NIL%		2Y - 12 N	Y - 14%		4 Y - 10 N	Y - 29%		5Y-9N	Y - 36%
Ribble	NaR	AR	X	PNaR	AR	X	PNaR	PaR	X	PNaR	PaR	X	PNaR	PaR	X	AR	PaR	NO - X
Wyre	PaR	AR	X	PaR	AR	X	PaR	AR	X	PaR	AR	X	PaR	AR	X	AR	PaR	NO - X
Lune	NaR	PaR	X	PNaR	AR	X	NaR	AR	X	PNaR	AR	X	PaR	PaR	1	AR	AR	YES - 🗸
Kent	PNaR	PNaR	- √	PNaR	PaR	X	PNaR	PaR	X	PNaR	PaR	X	PaR	PaR	1	PaR	PaR	YES - 🗸
Leven	PNaR	PaR	X	PaR	PaR	1	PaR	PNaR	X	PaR	PaR	√	PaR	PaR	1	PaR	PNaR	NO - X
Crake	PaR	PaR	1	PaR	PaR	1	PaR	AR	X	PaR	AR	X	PNaR	PaR	X	PaR	PaR	YES - 🗸
Duddon(&Lickle)	NaR	NaR	1	NaR	PaR	X	NaR	PNaR	X	NaR	PNaR	X	NaR	PNaR	X	NaR	PNaR	NO - X
Esk	PNaR	PaR	X	PNaR	PaR	X	PNaR	PaR	X	PaR	PaR	1	PaR	PNaR	X	PaR	PNaR	NO - X
Irt	PNaR	PNaR	1	PNaR	PaR	X	PNar	AR	X	PNaR	AR	X	PNaR	PaR	X	PNaR	PaR	NO - X
Ehen	PNaR	NaR	X	PNaR	PNaR	1	NaR	PaR	X	NaR	PaR	X	NaR	PaR	X	NaR	PaR	NO - X
Calder	PaR	PaR	1	PaR	PaR	1	PaR	AR	X	PaR	AR	X	PNaR	AR	X	PaR	AR	NO - X
Derwent	NaR	PNaR	X	PNaR	PaR	X	NaR	AR	X	PNaR	AR	X	PNaR	PaR	X	PaR	PaR	YES - 🗸
Eden	PNaR	AR	X	PNaR	AR	X	PNaR	PaR	X	PNaR	PaR	X	PaR	PaR	1	AR	PaR	NO - X
Esk-Border	PNaR	PaR	X	PNaR	PaR	X	NaR	PaR	X	NaR	PaR	X	PNaR	AR	X	Par	PaR	YES - 🗸
ENGLAND TOTAL		21 Y - 21 N	Y - 50 %		15 Y - 27 N	Y - 36 %		10 Y - 32 N	Y - 24 %		9 Y - 33 N	Y - 21 %		12 Y - 30 N	Y - 29%		17 Y - 25 N	Y - 40%
Wales																		
Wye	AR	AR	- √	AR	AR	1	AR	PaR	X	AR	PaR	X	AR	PaR	X	PaR	PaR	YES - 🗸
Usk	PNaR	PaR	X	PaR	PaR	1	PaR	PaR	1	PaR	PNaR	X	PNaR	PNaR	1	PaR	PaR	YES - 🗸
Taff & Ely	AR	AR	1	AR	AR	1	AR	AR	- √	AR	AR	1	AR	AR	1	PaR	AR	NO - X
Ogmore	AR	AR	- √	PaR	AR	X	PaR	AR	X	PaR	AR	X	PaR	AR	X	AR	AR	YES - 🗸
Tawe	PNaR	AR	X	PNaR	AR	X	PaR	AR	X	PaR	AR	X	PaR	AR	X	AR	AR	YES - 🗸
Tywi	NaR	AR	X	PNaR	AR	X	PNaR	AR	X	PNaR	PaR	X	PaR	PaR	1	AR	PaR	NO - X
Taf	PaR	AR	X	PaR	PaR	1	PNaR	PaR	X	PNaR	AR	X	PaR	PaR	- √	AR	PaR	NO - X
E&W Cleddau	PaR	AR	X	PaR	AR	X	PNaR	AR	X	PaR	AR	X	PaR	AR	X	AR	AR	YES - 🔨
Teifi	PNaR	PaR	X	PaR	PaR	1	PNaR	PaR	X	PNaR	PaR	X	PaR	PaR	1	PaR	AR	NO - X
Rheidol	PaR	AR	X	PaR	AR	X	Par	AR	X	PaR	AR	X	AR	AR	- √	AR	AR	YES - 🔨
Nevern	PNaR	AR	X	PaR	PaR	1	PaR	PaR	1	PaR	PaR	1	AR	PaR	X	AR	PaR	NO - X
Dyfi	PNaR	AR	X	PaR	AR	X	PaR	AR	X	PNaR	AR	X	PaR	AR	X	AR	PaR	NO - X
Dysinni	AR	AR	- √	AR	PaR	X	AR	PaR	X	AR	PaR	X	AR	PaR	X	AR	PaR	NO - X
Mawdach	AR	PaR	X	AR	PaR	X	PaR	PaR	1	PNaR	PaR	X	PNaR	PaR	X	PaR	PaR	YES - 🔨
Dwyryd	PNaR	AR	X	PaR	PaR	1	AR	PaR	X	AR	AR	- √	AR	PaR	X	AR	PaR	NO - X
Glaslyn	PNaR	PNaR	- √	PNaR	PaR	X	PNaR	PNaR	- √	PNaR	PaR	X	PNaR	PaR	X	PNaR	PaR	NO - X
Dwyfawr	AR	AR	- √	AR	AR	1	AR	AR	- √	AR	PaR	X	AR	AR	- √	AR	PaR	NO - X
Seiont	PNaR	AR	X	PNaR	AR	X	PNaR	AR	X	PNaR	AR	X	PaR	AR	X	AR	AR	YES - 🗸
Ogwen	PNaR	PNaR	- √	PNaR	AR	X	PNaR	PaR	X	PNaR	PaR	X	PNaR	PaR	X	PaR	PaR	YES - 🔨
Conwy	NaR	NaR	- √	NaR	PaR	X	NaR	PaR	X	NaR	PaR	X	NaR	PaR	X	PNaR	PaR	NO - X
Clwyd	PaR	PaR	1	PaR	PaR	1	PNar	AR	X	PNaR	AR	X	PNaR	AR	X	PaR	AR	NO - X
Dee	PaR	AR	X	PNaR	PaR	X	PaR	AR	X	AR	AR	1	AR	AR	1	AR	PaR	NO - X
WALES TOTAL		<u>9 Y - 13 N</u>	<u>Y - 41 %</u>		9Y - 13N	<u>Y - 41 %</u>		6 Y - 16 N	<u>Y - 27 %</u>		4 Y - 18 N	<u>Y - 18 %</u>		<u>8Y - 14 N</u>	Y - 36 %		<u>9 Y - 13 N</u>	Y - 41 %
E & W TOTAL		30 Y - 34 N	Y - 47%		24 Y - 40 N	Y - 37 %		16 Y - 48 N	Y - 25 %		13 Y - 51 N	Y - 20 %		<u>20 Y - 44 N</u>	Y - 34%		26 Y - 38 N	Y - 41%

Annexe 5 - 3 alternate River Classification and C & R Decision Structure models

Please note the Severn Assessments and models use the original unadjusted estimates) English Rivers CL Attainment Proposed EA Model stock status 3 model alternatives with Classifications/Measures

mja. r	edfa/nwattee of	0.03.18									
	Nos of years exceeding CL (last 5 yrs)	5 year Average CL %	2016 stock status	2021 stock status	EA proposed C & R % Measrues	MODEL 1 Number years Exceed CL Classific 5 yes CL 3/4 " "	C & R % Measures V1 80% V2 - 90%	MODEL 2 5 yrs Ave % CL Classific 5 100% 80 - 100%	C & R % Measures V1 80% V2 - 90%	MODEL 3 best 4 out of 5 years Ave % CL Classific > 100% R0 - 100%	C & R % Measures V1 80% V2-90%
NE						11	and the second se				Lucas and the second
Couquet	4	196	PaR	PaR	V - 90 %	4 yrs - V2	90%	196	V1 - 80%	222	V1-80%
Tyne	5	381	PNaB	PNaR	V Increase	5 " - Mit	80%	381	V1 - 80%	407	V1 - 80%
Wear	5	324	PNaR	PNaR	V increase	5 " - V1	80%	324	V1 - 80%	350	V1-80%
Tees	o	20	AR.,	A.H.,	NO LOOPS	0 ¹⁰ - ME3	100%	2.0	A/I3 100%		No.3 10076
Eck - Yorks	1	89	PaR	PaR	V - 90%	3 ··· - Petral	100%6	89	V2 - 90%	93	V2 - 90%
Southern			and the second second		1 Contraction of the second se						A second reactions
Test	2	92	PaR	PRAB	V increase	- 1 No.0	10096	92	V2 - 90%	98	V2 - 90%
Itchen	2	94	PaR	PaR	V - 90%	2 1 - 1000	100%	94	V2 - 90%	104	V1 - 80%
SW					A CONTRACTOR				and the second s	1	
Avon - Hant	0	57	Paß	Paß	V - 90%	41 10118	3.0096	200	TABLE COMMON	612	543 10096
Stour	0	12	A11	4511	M-LOOMS	O 1 - NA.3	100%	1.2	N11 - 100%	1.1	N43 - 100%
riddle	0	47	PaR	PaR	V - 90%	6) ¹¹ – 64.8	100%		843 - 100%	5.2	N11 - 100%
Frome	2	92	PaR	PaR	V - 90%	2 ** - 1913	100%	92	V2 - 90%	102	V1 - 80%
Axe	0	39	PaR	PaR	V - 90%	O NUB	100.96	10.00	TV13 - 1.0036	4.4	513 100%
Exe	2	122	PaR	PaR	V - 90%	2 1 NAB	10025	122	M.1 - 8096	141	V1 - 80%
Teign	a	124	PaR	PaR	V - 90%	4 " - V2	90%	3.24	V1 - 8096	138	V1 - 80%
Dart	1	54	AR.	PaR	V - 90%	ALL NO. INVESTIGATION OF	100%	25.4	70715 - 3.034375	. 64	NIS LAND
Avon-Devon	1	75	PaR	PaR	V - 90%	-a	100%	2655	MTR - 1.0036	81	V2 - 90%
Erme	0	38	611	PaR	V = 90%	0 ** - M13	10076	38	MIG-10076	444	843 - 10055
Yealm	0	37	1.65	10.11	NO LOOM	0.1 013	100%6	472	PM 2 - 100396	-643	N43 10056
Plym	o	28	AR	ANR .	BR 100%	0 1 - NAM	100%	12.05	6/5/3 - 3 CH298	345	STE - 100%
Tavy	2	76	AR	PaR	V - 90%	2	1000306	76	MIR - 10096	85	V2-90%
Temar	2	94	PaR	PaR	V - 90%	3 1 043	100%	9.6	1/13 100256	99.50%	V2-90%
Lynher	a	168	PaR	PaR	V - 90%	4 "- V2	90%	168	VI - 80%	191	V1-80%
Fowey	5	178	PaR	PaR	V - 90%	5 H - M1	80%	3.78	VI - 80%	197	V1 - 80%
Camel		118	PaR	PaR	V - 90%	a "- V2	90%	1.1.0	M1 - 80%	1.25	VI - 80%
Taw	4	150	PaR	PaR	V - 90%	4 "- V2	90%	150	N1 - 80%	175	V3 - 80%
Turridge	1	81	Paß	Paß	V - 90%	a the weat	400%	83	V2-90%	89	V2 - 90%
Lyn	2	98	1000	PaR	V - 90%	2	4.0000	98	V2-90%	112	VI - 8056
Midlands			and the second s	1. The second states		A CONTRACTOR	1 1 1 2		Sector and the sector sector is		A CONTRACTOR
Severn	4	166	PNaB	PNaB	V - 80%	4 " - V2	90%	1.66	V1-80%	192	V1-80%
NW											
Ribble	5	130	PaR	44.0	NO- 1-0076	5 "- VI	80%	130	V1 - 80%	136	V1 - 8096
Wyre	o	19	AR	AT	M1- 1.0055	13 X- 843	100%	2.9	NTR - 10094	28	NTE - 100%
Lune	4	105	A11	ALC: N	84 10096	4 "- 1/2	90%	105	V1-80%	109	V1 - 80%
Kerit	2	102	PaR	PaR	V - 90%	-1 1 - NAME	10096	202	VI - 8096	13.4	V1-8096
Leven		119	PaR	PaR	V - 90%	3 "- V2	90%	33.9	VII - 80%	1.04	V1 - H0%
Crake	1	59	A11-	100	NO - 3 (30396	3. 11 - Ports	100%	19.10	TATUS - 3 (20076)	25	N18 - 100%
Duddon		280	PNAR	PNAR	V- 80%	5 "- Ma	8096	260	M3 - 8096	306	V1 - 80%
Esk	4	139	PaR	PaR	V - 90%	4 " - V2	90%	139	VA - 8090	149	V1 - 80%
Int	2	91	19.01	PaR	V - 90%	2 1 mar	100%	91	V2 - 90%	103	V1 - 80%
Ehen	4	170	Par	PaR	V - 90%	4 "- 1/2	90%	170	V1 - 80%	1.94	V1 - 80%
Calder	1	57	A PL	AR	NO - 100704	A	100%	57	MI 10092	68	P13 1009
Derwent	2	105	41	An	54 - LOOPE	3 1 34.8	1.01396	105	V1 - 80%	117	V1 - 80%
Edian	2	87	PaR	PaR	V - 90%	2 1 10 104 1	100%	87	V2 - 90%	95	V2 - 90%
Esh-Border	1	83	PaR	PaR	V - 90%	3	100%	83	V2 - 90%	86	V2 90%

Appendix 5

Two peculiarities of the Severn

There are a two special features of the Severn salmon fishery that the Agency have never properly taken into account when assessing either stocks or the impact of regulatory measures.

- 1. The spring byelaws had more impact in reducing angling numbers on the Severn than on any other river. In 1995 there were 29,786 days fished^{xxxvii}. By 2005 this had fallen to 5,521. This happened because most of the system has steep overgrown banks where only bait fishing is practicable^{xxxvii}. Therefore, the ban on bait fishing before June 16th effectively closed most of the fishery for most of the peak salmon run, leaving only the weir pools and a few other locations for people to fish. This has never been taken into account by the agency when making their stock assessment as the same exploitation rate was applied to the river prior to and after this massive reduction in effort.^{xxxix}
- 2. The construction of the navigable river and weirs in the mid 19th century holds the stock back and has created a late run of fish into the main fishery after the season is over. Low flows in late spring and early summer create a situation in which a sizeable portion of the main run get stuck either in the estuary or in the 29 miles of lower river between Diglis and Gloucester. ^{xl} The overwhelming majority occupy positions away from the weir pools in the deep slow canal like water where the ban on float fishing means there is no legal means of catching them. Every year there is a substantial run of fish over Diglis weir in October and November after the season closes. This was recognised as far back as 1885 by J W Willis Bund chair of the board of conservators in his book salmon problems^{xli}. In contrast the River Dee from which much data is imported into the Severn assessment sees no such late run of fish outside of the season^{xlii}.

APPENDIX 6

Collective Anglers' Response to River Severn Net Limitation Order and Byelaws Proposals 2021

Severn Fisheries Group was aware from previous consultation experience that there was a high risk that a large number of anglers would fail to respond to the consultation. There are a number of reasons for this including:

- Some anglers were unaware that a consultation was taking place. e.g. one message we
 received read "As the Leader of a syndicate on a Tanat beat, appalled, as we have never
 been informed/approached/consulted" although most reports did come through casual
 conversations and telephone calls
- Some anglers do not have access to a computer/tablet/smartphone /internet etc
- Many of those that do have access to IT are not everyday users and lack the confidence to complete an online form
- A significant number felt that the online form would lead them into giving answers the EA wanted rather than being able to raise their own concerns

To that end we circulated a standardised response which anglers could sign and submit if they agreed with its content. This was hosted on the PAAS website which automatically emailed the response to <u>severnfisheriesgroup@btinternet.com</u>. A copy of their objection to the consultation is included below followed by a list of the names of the 865 anglers who were in agreement with the contents and the date on which they signed. In compliance with General Data Protection Regulation, we have not included their email addresses although we can provide further proof of authenticity as required.

Angler Objection Statement to the 2021 River Severn Net Limitation Order and Byelaws Proposals.

I am very much opposed to what is being proposed here for the River Severn and its tributaries and believe that in reality more harm than good will be the result if these byelaws are approved. I have not filled in the EA consultation form as there are too many leading questions which do not allow me to give my honest opinions on the real issues. The reason for my objections are as follows:

• Where is the evidence that these proposals will make any difference to the numbers of salmon in the Severn?

We have had the spring byelaws in place for many years and they have made no difference to the numbers of salmon in the river. The River Wye has had similar byelaws to those proposed for the Severn for 9 years now and there are less salmon in the river not more. The best answer the EA seem to come up with is they don't know how much worse it would have been. So where is the evidence that this is going to make a difference?

$\circ~$ I am very suspicious of the real reason for the byelaws

The emergency byelaws for the Severn were introduced on the Severn on 14th June 2019, just 2 days before it would have been legal to take a salmon. So why did the EA suddenly discover it was using the wrong figures? It seems suspicious that this was at the same time that the same restrictions were being approved for the whole of Wales and this was just to make the Severn fit in with that. It even says on Page 49 of the Technical Case Structure that we need to fit in with Wales and this will make the Severn different than other similar English rivers. Surely that can't be right.

• These Byelaws will result in less salmon in the Severn not more!

Anglers are "the eyes and ears" of the river and simply by being out on the river they act as a deterrent to poachers who will cause far more damage than a law abiding angler taking an occasional fish could ever do. They also help deter cormorants and goosanders who cause a lot of damage to the stocks of salmon parr in the river. More importantly they are able to report pollution to the authorities which causes the death of far more fish than anglers do yet very little happens to those responsible.

• The byelaws will have a damaging effect on anglers' health and wellbeing.

It is widely accepted that angling is beneficial for both mental and physical health. Being out in the fresh and walking along the riverbank provides us with both exercise and allows us to appreciate the natural environment. It is not coincidental that most anglers are also keen naturalists. Along with the social contact when we meet other anglers we all feel better after a day on the river. To hear anglers talking about being despondent and depressed about the possibility of byelaws being in place for 10 years undoes all of the benefits at a stroke. For elderly anglers, and there are many of them, 10 years of byelaws seems like a life sentence.

• The method restrictions within the byelaws make it far more difficult to catch a salmon and large parts of the river will become unfishable.

Many parts of the River Severn are impossible to fish with anything other than a worm. The area upstream of the confluence with the River Vyrnwy is a prime example. Elderly and less able anglers are unable to stand and fish using the only methods left available to them and therefore this is an example of age discrimination. Making single barbless hooks makes landing a fish ever more difficult and what the EA don't seem to recognise or care about is the harder you make it to catch a fish the fewer people will go fishing. As previously stated the fewer legitimate anglers on the river the more poaching there will be. Unfortunately the EA seem to have their heads buried in the sand by not recognising that. In any case the method restrictions are practically unenforceable as anglers can simply claim that they are fishing for another species. When the EA tell me that at least I can carry on fishing for other species instead of salmon I find it shows a complete lack of understanding. It's like being told you can longer order your favourite steak when you go out for a meal but never mind you can still go out and enjoy a bowl of rice instead.

• Who is going to encourage youngsters to take up fishing when anglers are driven away from the river?

Many anglers first start to fish when they are taken to the river by their father or grandfather. If the parents or grandparents are discouraged from fishing then how are they going to be encouraged? You only have to look how many anglers no longer choose to fish in Wales now that new byelaws have been introduced to realise what the effect will be on the Severn. The anglers have not left because there are no fish in the river, they have left because byelaws make it far too difficult for many of them to catch fish.

It is time for the EA to wake up and realise that their proposals will do more harm than good and that there are many consequences that they are either ignoring or simply do not care about. As things stand I have no confidence in the EA's ability to look after the river and it really is time for them to start listening to those who actually spend time on the river and really do care about the future of the River Severn.

Your email address (optional) - We will NEVER share your email address with any third parties.

Your Name:

	Angler Objecting To Severn	Date Of	46	Andrew Dandy	06-Apr-21
	Byelaw Proposals	Completion	47	Andrew Eden	06-Apr-21
1	A Davies	07-Apr-21	48	Andrew Fairclough	07-Apr-21
2	A Penswick	06-Apr-21	49	Andrew Figgins	06-Apr-21
3	A. Buckley	07-Apr-21	50	Andrew Ford	06-Apr-21
4	A.T. Cottrill	07-Apr-21	51	Andrew Hills	06-Apr-21
5	Adam Aleixos	06-Apr-21	52	Andrew Holden	06-Apr-21
6	Adam Charlesworth	10-Apr-21	53	Andrew Holmes	07-Apr-21
7	Adam Clark	06-Apr-21	54	Andrew Johnson	06-Apr-21
8	Adrian Kendrick	06-Apr-21	55	Andrew Mossop	06-Apr-21
9	Adrian Pountney	06-Apr-21	56	Andrew Myerscough	06-Apr-21
10	Adrian Watkiss	06-Apr-21	57	Andrew Overend	08-Apr-21
11	Adrian Wild	07-Apr-21	58	Andrew Peart	06-Apr-21
12	Aiden Defoe	06-Apr-21	59	Andrew Poynton	08-Apr-21
13	Alan Bethell	06-Apr-21	60	Andrew Reay-Robinson	06-Apr-21
14	Alan Brittain	06-Apr-21	61	Andrew Shrigley	06-Apr-21
15	Alan Brown	08-Apr-21	62	Andrewblastland	07-Apr-21
16	Alan David Bowker	06-Apr-21	63	Andy Brunwin	07-Apr-21
17	Alan Dawson	04-Apr-21	64	Andy Hinchliffe	06-Apr-21
18	Alan Dunn	06-Apr-21	65	Andy Kelly	07-Apr-21
19	Alan Hedley	06-Apr-21	66	Andy Owen	07-Apr-21
20	Alan Jones	07-Apr-21	67	Andy Sutcliffe	06-Apr-21
21	Alan Knowles	07-Apr-21	68	Andy Tracey	06-Apr-21
22	Alan Micklethwaite	06-Apr-21	69	Andy Wilkinson	06-Apr-21
23	Alan Mottram	07-Apr-21	70	Angela Akkor	07-Apr-21
24	Alan Parker	07-Apr-21	71	Anthony Abrahams	06-Apr-21
25	Alan Percox	06-Apr-21	72	Anthony Allen	06-Apr-21
26	Alan Richardson	06-Apr-21	73	Anthony D L Norville	07-Apr-21
27	Alan Tosh	06-Apr-21	74	Anthony Gilman	07-Apr-21
28	Alan Uttley	06-Apr-21	75	Anthony Harris	06-Apr-21
29	Alan Vertigan	08-Apr-21	76	Anthony Hartley	07-Apr-21
30	Alan Worthington	06-Apr-21	77	Anthony Mulrenan	06-Apr-21
31	Alan Yoxall	06-Apr-21	78	Anthony N Hall	07-Apr-21
32	Alec Boughey	06-Apr-21	79	Anthony Parton	07-Apr-21
33	Alex Cruickshanks	06-Apr-21	80	Arthur Edward Leen	07-Apr-21
34	Alex Deane	07-Apr-21	81	Arthur Leonard Bradshaw	07-Apr-21
35	Alfred Patrick Atkins	07-Apr-21	82	Aubrey Hudson	07-Apr-21
36	Alistair Dobie	08-Apr-21	83	Austin Jones	07-Apr-21
37	Alistair Dobie	08-Apr-21	84	B Kellock	06-Apr-21
38	Alistair Murray	07-Apr-21	85	B Phillips	06-Apr-21
39	Allan Cuthbert	04-Apr-21	86	Barrie Greenwood	06-Apr-21
40	Allan William Amey	07-Apr-21	87	Barry Charles Gardiner	07-Apr-21
41	Allen Norris	07-Apr-21	88	Barry Cubbins	07-Apr-21
42	Andrea Humphries	07-Apr-21	89	Barry Hamer	06-Apr-21
43	Andrej Salibi	06-Apr-21	90	Barry Leeson	06-Apr-21
44	Andrew Bailey	07-Apr-21	91	Bernard Coslett	10-Apr-21
45	Andrew Curley	06-Apr-21	92	Bernard Keiley	06-Apr-21

93	Bernard Kettle	04-Apr-21	142	Colin Smith	06-Apr-21
94	Bernard Morgan	06-Apr-21	143	Colin Wait	10-Apr-21
95	Blackett Mr	07-Apr-21	144	Colin Watson	06-Apr-21
96	Bob Charity	06-Apr-21	145	Craig Davies	07-Apr-21
97	Bob Gibbon	06-Apr-21	146	Cyril Wright	07-Apr-21
98	Bob Hawkes	07-Apr-21	147	D J Cockayne	07-Apr-21
99	Bob Williams	06-Apr-21	148	D J Kettle	06-Apr-21
100	Brad Hibbert	07-Apr-21	149	D J Reade	09-Apr-21
101	Brian Davies	07-Apr-21	150	D P Couling	07-Apr-21
102	Brian George Handley	07-Apr-21	151	D Snape	06-Apr-21
103	Brian Hope	06-Apr-21	152	D Sumner	07-Apr-21
104	Brian Moxon	06-Apr-21	153	D. Stevenson	07-Apr-21
105	Brian Ogden	08-Apr-21	154	Dale Asher	06-Apr-21
106	Brian Smith	07-Apr-21	155	Dale Green	06-Apr-21
107	Brian Williamson	06-Apr-21	156	Damian Harrison	07-Apr-21
108	Bryan Baron	07-Apr-21	157	Daniel R Joned	06-Apr-21
109	Bryan Chisnall	07-Apr-21	158	Darren Albert Hood	07-Apr-21
110	C J Glover	07-Apr-21	159	Darren Barlow	06-Apr-21
111	C.R.Ellis	07-Apr-21	160	Darren Evans	06-Apr-21
112	Carl Clewley	06-Apr-21	161	Darren King	06-Apr-21
113	Charles A Abbott	04-Apr-21	162	Darren Mcdonnell	06-Apr-21
114	Charles Fox	06-Apr-21	163	Dave Bassett	06-Apr-21
115	Charles Wilk	06-Apr-21	164	Dave Booth	07-Apr-21
116	Chris C Bulman	06-Apr-21	165	Dave Bull	07-Apr-21
117	Chris Dudman	07-Apr-21	166	Dave Pickering	06-Apr-21
118	Chris Emberton	07-Apr-21	167	Dave Taplin	06-Apr-21
119	Chris Hart	06-Apr-21	168	Dave Turner	07-Apr-21
120	Chris Horwell	07-Apr-21	169	David Acton	06-Apr-21
121	Chris Mabbott	07-Apr-21	170	David Allott	06-Apr-21
122	Chris Shore	06-Apr-21	171	David Armstrong	06-Apr-21
123	Chris Tudgay	07-Apr-21	172	David Atkinson	06-Apr-21
124	Chris White	04-Apr-21	173	David Barlow	07-Apr-21
125	Christian Ingham	07-Apr-21	174	David Berry	07-Apr-21
126	Christopher Birch Price	07-Apr-21	175	David Birkbeck	06-Apr-21
127	Christopher Gerrard	07-Apr-21	176	David Boardman	06-Apr-21
128	Christopher Neil Watson	08-Apr-21	177	David Brealey	06-Apr-21
129	Christopher Pitts	07-Apr-21	178	David Calladine	07-Apr-21
130	Christopher Roberts	07-Apr-21	179	David Cartlich	07-Apr-21
131	Cliff Beardmore	07-Apr-21	180	David Charlesworth	06-Apr-21
132	Cliff Taylor	06-Apr-21	181	David Clegg	06-Apr-21
133	Cliff.Hemming	07-Apr-21	182	David Connelly	06-Apr-21
134	Clive Evans	06-Apr-21	183	David Dale	07-Apr-21
135	Clive Fawkes	06-Apr-21	184	David E Smith	07-Apr-21
136	Clive Sawbridge	07-Apr-21	185	David England	06-Apr-21
137	Clive Wilcock	07-Apr-21	186	David Evans	06-Apr-21
138	Colin Betts	07-Apr-21	187	David Felton	07-Apr-21
139	Colin Bowell	07-Apr-21	188	David G Calladine	07-Apr-21
140	Colin Fairbrother	07-Apr-21	189	David Goodwin	06-Apr-21
141	Colin Peter Fowler	07-Apr-21	190	David Gorton	06-Apr-21

Page 60 of 71

191	David Haskett	06-Apr-21	242	Dominic Sidoli	06-Apr-21
192	David Hindle	06-Apr-21	243	Donald Hilton Haughin	07-Apr-21
194	David Hitchen	06-Apr-21	244	Dr Anthony Bethwaite	08-Apr-21
195	David Hunter	06-Apr-21	245	Dr Iain Gibb	08-Apr-21
196	David Isherwood	07-Apr-21	246	Dr N C P Woodyatt	06-Apr-21
197	David J Newman	06-Apr-21	247	Dr Nicholas Swift	06-Apr-21
198	David John Hardy	06-Apr-21	248	Dr Richard White	07-Apr-21
199	David Johnson	06-Apr-21	249	Duncan Brown	07-Apr-21
200	David Jones	07-Apr-21	250	Eddie Strange	06-Apr-21
201	David Jozefczyk	09-Apr-21	251	Edward Currie	06-Apr-21
202	David Kittson	06-Apr-21	252	Edward Leligdowicz	07-Apr-21
203	David Leader	07-Apr-21	253	Edward Mc Coy	08-Apr-21
204	David Luckhurst	06-Apr-21	254	Edward Small	07-Apr-21
205	David Massam	07-Apr-21	255	Edward Tate	07-Apr-21
206	David Moore	06-Apr-21	256	Ellis Brazier	04-Apr-21
207	David Norman	06-Apr-21	257	Eric Hughes	08-Apr-21
208	David Ogden	07-Apr-21	258	Eric Stott	07-Apr-21
209	David Owen	07-Apr-21	259	Francis Brown	06-Apr-21
210	David Paul Walker	06-Apr-21	260	Frank Alan Booth	07-Apr-21
211	David Pointon	06-Apr-21	261	Frank Cherry	07-Apr-21
212	David Purslow	06-Apr-21	262	Frank Gleeson	07-Apr-21
213	David Riding	07-Apr-21	263	Frank Savery	06-Apr-21
214	David Riley	06-Apr-21	264	Frank Walton Age 94	04-Apr-21
215	David Roberts	06-Apr-21	265	Fred Salt	04-Apr-21
216	David Seabury	06-Apr-21	266	G M Howson	06-Apr-21
217	David Sharman	07-Apr-21	267	G.B Flood	06-Apr-21
218	David Sherratt	06-Apr-21	268	Gail Nelson	06-Apr-21
219	David Smith	07-Apr-21	269	Gareth Baines	06-Apr-21
221	David Stackhouse	06-Apr-21	270	Gareth Davies	06-Apr-21
222	David Thompson	07-Apr-21	271	Gareth Griffiths	06-Apr-21
223	David Urwin	06-Apr-21	272	Garrett Barry	06-Apr-21
224	David Vanderhook	06-Apr-21	273	Garry Carradice	06-Apr-21
225	David Webster	07-Apr-21	274	Garry Davies	07-Apr-21
226	David Wildey	06-Apr-21	275	Gary Birchall	08-Apr-21
227	David Wilkinson	07-Apr-21	276	Gary Brookfield	06-Apr-21
228	David Wood	06-Apr-21	277	Gary Butcher	07-Apr-21
229	Dean Walker	07-Apr-21	278	Gary Clarke	07-Apr-21
230	Denis Maloney	06-Apr-21	279	Gary Earnshaw	06-Apr-21
231	Denis Noden	07-Apr-21	280	Gary Graham	07-Apr-21
232	Derek Evans	08-Apr-21	281	Gary Lord	06-Apr-21
233	Derek Makinson	06-Apr-21	282	Gary Mcmahon	06-Apr-21
234	Derek Rutter	06-Apr-21	283	Gary Turner	06-Apr-21
235	Derek Ryley	06-Apr-21	284	Gavin Banks	07-Apr-21
236	Derek Thew	08-Apr-21	285	Gavin Laidlaw	06-Apr-21
237	Derek Wood	07-Apr-21	286	Geoff Jones	08-Apr-21
238	Derick Ramsbottom	07-Apr-21	287	Geoff Rothwell	06-Apr-21
239	Derrick Whitelegg	06-Apr-21	288	Geoff Yates	07-Apr-21
240	Des Crosby	08-Apr-21	289	Geoffrey Rimell	09-Apr-21
241	Diane Bartlett	07-Apr-21	290	George Lonsdale	07-Apr-21

291	George Wallace	04-Apr-21	340	Ian Marcroft	07-Apr-21
292	Gerald Guy	07-Apr-21	341	Ian Mitchell	06-Apr-21
293	Gerald Lennon	06-Apr-21	342	Ian Nelson	06-Apr-21
294	Gerald Walters	07-Apr-21	343	Ian Rhodes	06-Apr-21
295	Gil Higham	06-Apr-21	344	Ian Robert Snowdon	07-Apr-21
296	Glyn Marshall	06-Apr-21	345	Ian Sutton	06-Apr-21
297	Glyn Roger Phillips	07-Apr-21	346	Ian Swan	06-Apr-21
298	Glynne Williamson	06-Apr-21	347	Ian Tomlinson	06-Apr-21
299	Gordon Mackay	06-Apr-21	348	Ian Whittaker	07-Apr-21
300	Gordon Sharp	06-Apr-21	349	Ian Woods	06-Apr-21
301	Graham Bergeret	07-Apr-21	350	Ivor Preece	08-Apr-21
302	Graham Bond	07-Apr-21	351	J Barry	06-Apr-21
303	Graham Booth	07-Apr-21	352	J G Moore	07-Apr-21
304	Graham Bretherton	07-Apr-21	353	J R Mason	06-Apr-21
305	Graham Foster	08-Apr-21	354	J S Morten	09-Apr-21
306	Graham Fox	07-Apr-21		I Noel Hulmston - I Lead A	_
307	Graham Goodare	07-Apr-21	355	Syndcate On The Tanat - Not	
308	Graham Harrison	07-Apr-21		Been Consulted On This!!	05-Apr-21
309	Graham Hill	06-Apr-21	356	Jack Shepherd	06-Apr-21
310	Graham Langshaw	08-Apr-21	357	Jacqueline Karbowski	07-Apr-21
311	Graham Price	06-Apr-21	358	James Biggerstaff	07-Apr-21
312	Graham Rogerson	06-Apr-21	359	James Kilmartin	07-Apr-21
313	Graham Ward	07-Apr-21	360	James Lally	06-Apr-21
314	Graham Woolley	06-Apr-21	361	James Macdonald	07-Apr-21
315	Graham Wortley	07-Apr-21	362	James Morris	06-Apr-21
316	Greg Lee	06-Apr-21	363	James Nigel Jones	06-Apr-21
317	H G Farnworth	06-Apr-21	364	James Twite	06-Apr-21
318	Harry Dawson	06-Apr-21	365	James Verney	07-Apr-21
319	Henry Brownlow	07-Apr-21	366	Jamie Chambers	06-Apr-21
320	Henry Roy Jefferies	07-Apr-21	367	Jamie Harrison	06-Apr-21
321	Howard Davy	06-Apr-21	368	Jamie Kay	07-Apr-21
322	Howard Hulme	07-Apr-21	369	Jamie Lenahan	06-Apr-21
323	Howard Podmore	08-Apr-21	370	Jan Scott	07-Apr-21
324	Hywel Bromley Davenport	04-Apr-21	371	Jason Bignell	06-Apr-21
325	Iain Baddeley	07-Apr-21	372	Jason Lawley	06-Apr-21
326	Ian Bibby	06-Apr-21	373	Jason Middleton	06-Apr-21
327	Ian Bradley	07-Apr-21	374	Jason Screen	07-Apr-21
328	Ian Cameron-Mcintosh	06-Apr-21	375	Jeff Powell	06-Apr-21
329	Ian Clark	06-Apr-21	376	Jeffrey Wilson	07-Apr-21
330	Ian Clarke	07-Apr-21	377	Jeremy Kettle	04-Apr-21
331	Ian Doyle	06-Apr-21	378	Jimmy Foster	06-Apr-21
332	Ian Eckersley	07-Apr-21	379	Joe Dootson	06-Apr-21
333	Ian F Jennings	06-Apr-21	380	John Aitchison	07-Apr-21
334	Ian Hall	06-Apr-21	381	John Allan Morgan	08-Apr-21
335	Ian Heathcote	06-Apr-21	382	John Barry Holmes	06-Apr-21
336	Ian J. Fox	07-Apr-21	383	John Beggs	06-Apr-21
337	Ian Kitching	06-Apr-21	384	John Booth	07-Apr-21
338	Ian Kitson	06-Apr-21	385	John Broadhurst	09-Apr-21
339	Ian Locker	06-Apr-21	386	John Cadman	07-Apr-21

Page 62 of 71

387	John Charles	07-Apr-21	436	Karl Hoult	06-Apr-21
388	John Charles Munnery	07-Apr-21	437	Karl Humphries	07-Apr-21
389	John Clarke	07-Apr-21	438	Karl Mellor	07-Apr-21
390	John Clarke	07-Apr-21	439	Keith J Robinson	06-Apr-21
391	John Coleman	06-Apr-21	440	Keith Moore	06-Apr-21
392	John Cotton	06-Apr-21	441	Keith Pope	07-Apr-21
393	John Dixon	06-Apr-21	442	Keith Purvis	07-Apr-21
394	John Eardley	31-Mar-21	443	Keith Watkinson	07-Apr-21
395	John Edge	06-Apr-21	444	Kelvin Abraham	06-Apr-21
396	John Fisher	07-Apr-21	445	Kelvin Wales	07-Apr-21
397	John Foster	07-Apr-21	446	Ken Allen	06-Apr-21
398	John G Hames	06-Apr-21	447	Ken Booth	06-Apr-21
399	John Gradwell	06-Apr-21	448	Kenneth Forster	08-Apr-21
400	John Hands	07-Apr-21	449	Kenneth Pollard	06-Apr-21
401	John Humphreys	05-Apr-21	450	Kenneth Ward	07-Apr-21
402	John Kershaw	06-Apr-21	451	Kenny Pollard	04-Apr-21
403	John Lee Mytton	07-Apr-21	452	Kevin Byrom	06-Apr-21
404	John Lucas	07-Apr-21	453	Kevin Cunningham	08-Apr-21
405	John Lynch-Smith	08-Apr-21	454	Kevin Envis	07-Apr-21
406	John Mann	08-Apr-21	455	Kevin Haughtonl	06-Apr-21
407	John Marriott	07-Apr-21	456	Kevin James Caldecott	07-Apr-21
408	John Mclaren	07-Apr-21	457	Kevin Lonergan	06-Apr-21
409	John Morley	06-Apr-21	458	Kevin Mcdougall	07-Apr-21
410	John Morris	07-Apr-21	459	Kevin Pountnev	06-Apr-21
411	John Oakes	07-Apr-21	460	Kevin Reddish	06-Apr-21
412	John Richardson	07-Apr-21	461	Kevin Saunders	06-Apr-21
413	John Rollo Burnham	06-Apr-21	462	Kevin Swift	07-Apr-21
414	John Sleigh	07-Apr-21	463	Kevin Thornley	07-Apr-21
415	John Speight	06-Apr-21	464	Kevin Tonks	06-Apr-21
416	John Stirrup	06-Apr-21	465	Laurie Parker	06-Apr-21
417	John Stokes	07-Apr-21	466	Lee Anderson	06-Apr-21
418	John Thornton	07-Apr-21	467	Lee Barry Davies	07-Apr-21
419	John Walsh	07-Apr-21	468	Lee Burley	06-Apr-21
420	John Wardle	06-Apr-21	469	Lee Collins	06-Apr-21
421	John Washington	07-Apr-21	470	Lee Marsden	06-Apr-21
422	John Whitham	07-Apr-21	471	Leif Davey	06-Apr-21
423	John Whittaker	07-Apr-21	472	Leighton Davies	06-Apr-21
424	John Wilkinson	06-Apr-21	473	Len Cleeton	07-Apr-21
425	John William Richards	07-Apr-21	474	Len Smith	07-Apr-21
426	John Wilson	06-Apr-21	475	Les Bickley	07-Apr-21
427	John Winkle	07-Apr-21	476	Les Capper	08-Apr-21
428	Jon Pugh	06-Apr-21	477	Les Mountford	06-Apr-21
429	Jon Rodgers	06-Apr-21	478	Leslie Oldfield	07-Apr-21
430	Jonathan Price	07-Apr-21	479	Leslie Richmond	07-Apr-21
431	Joseph Bryan Upton	07-Apr-21	480	Liam Monaghan	06-Apr-21
432	Joseph Hirst	06-Apr-21	481	Lucy Glover	07-Anr-21
433	Julian Young	07-Apr-21	482	Lyndon Ford	06-Apr-21
434	Justin Isaacs	07-Anr-21	483	M Handvside	07-Anr-21
435	Karen Johnson	06-Anr-21	484	M I Watson	07-Anr-21
		~~ · · · · · · ·			v, 1 pi 21

Page 63 of 71

485	M.Bowden	07-Apr-21	534	Michael Davis	06-Apr-21
486	Mac Stephens	06-Apr-21	535	Michael Edwards Marsh	07-Apr-21
487	Major (Retired) Peter Banks	06-Apr-21	536	Michael Ellison	08-Apr-21
488	Malcolm Bexon	07-Apr-21	537	Michael Goodwin	06-Apr-21
489	Malcolm Bliss	07-Apr-21	538	Michael Hardaker	06-Apr-21
490	Malcolm Browne	07-Apr-21	539	Michael Holloway	07-Apr-21
491	Malcolm Crawshaw	06-Apr-21	540	Michael Jacks	06-Apr-21
492	Malcolm Haworth	06-Apr-21	541	Michael James Wildman	08-Apr-21
493	Malcolm Norbury	06-Apr-21	542	Michael Lisin	07-Apr-21
494	Manfred Spille	07-Apr-21	543	Michael Ollis	07-Apr-21
495	Mark Bowman	06-Apr-21	544	Michael Rawlinson	06-Apr-21
496	Mark Cumpston	07-Apr-21	545	Michael Roskell	06-Apr-21
497	Mark Davies	06-Apr-21	546	Michael Vaughan	09-Apr-21
498	Mark Germani	06-Apr-21	547	Michael Waters	06-Apr-21
499	Mark Hedley Cleaver	06-Apr-21	548	Michael Whitman	07-Apr-21
500	Mark Johnson	07-Apr-21	549	Michael.Forrest	07-Apr-21
501	Mark Langford Rotton	06-Apr-21	550	Michelle Moore	06-Apr-21
502	Mark Mabbitt	06-Apr-21	551	Mick Bennett	07-Apr-21
503	Mark Marshall	07-Apr-21	552	Mike Bush	07-Apr-21
504	Mark Norwood	09-Apr-21	553	Mike Ford	07-Apr-21
505	Mark Ramsden	07-Apr-21	554	Mike Goddard	07-Apr-21
506	Mark Ridley	07-Apr-21	555	Mike Kalnins	06-Apr-21
507	Mark Roebuck	07-Apr-21	556	Mike Middleton	04-Apr-21
508	Mark Saxon	07-Apr-21	557	Mike Norbury	07-Apr-21
509	Mark Siviter	06-Apr-21	558	Mike Whitman	06-Apr-21
510	Mark Storer	07-Apr-21	559	Mohammed Arshadul Haque	06-Apr-21
511	Mark Sulway	07-Apr-21	560	Mr A J Nicholson	04-Apr-21
512	Mark Swaine	06-Apr-21	561	Mr A Moore	07-Apr-21
513	Mark Tucker	06-Apr-21	562	Mr C Yearsley	07-Apr-21
514	Mark Vickers	09-Apr-21	563	Mr Colin Stracey	07-Apr-21
515	Mark Whalley	07-Apr-21	564	Mr David A Swift	06-Apr-21
516	Mark Young	06-Apr-21	565	Mr David Stevenson	06-Apr-21
517	Martin Burgess	07-Apr-21	566	Mr G Williams	06-Apr-21
518	Martin Gregory	09-Apr-21	567	Mr Geoffrey Evans	06-Apr-21
519	Martin Stubbs	04-Apr-21	568	Mr Jonathan William Jennings	07-Apr-21
520	Martin Swindley	06-Apr-21	569	Mr Leonard Bartlett	07-Apr-21
521	Martin Vidler	10-Apr-21	570	Mr Leslie Ward	06-Apr-21
522	Martin Wormald	07-Apr-21	571	Mr Mark Pedley	06-Apr-21
523	Martyn Sime	06-Apr-21	572	Mr P Clayton	06-Apr-21
524	Matt Corker	06-Apr-21	573	Mr P Mawdsley	06-Apr-21
525	Matt Oliver	07-Apr-21	574	Mr Peter Brown	07-Apr-21
526	Matthew Counsel	06-Apr-21	575	Mr R Webster	07-Apr-21
527	Matthew Gower	06-Apr-21	576	Mr Richard Shuttleworth	07-Apr-21
528	Mervyn Bellis	07-Apr-21	577	Mr V J Hodgson	07-Apr-21
529	Michael Antony Eccles	07-Apr-21	578	Mr Vincent Floyd	07-Apr-21
530	Michael Archer	07-Apr-21	579	N. Robinson.	06-Apr-21
531	Michael Barrell	06-Apr-21	580	Neil Atkins	06-Apr-21
532	Michael Bullock	07-Apr-21	581	Neil Clayton	07-Apr-21
533	Michael Davies	06-Apr-21	582	Neil Darling	07-Apr-21

Page 64 of 71

583	Neil Jones	06-Apr-21	632	Paul Phillips	07-Apr-21
584	Neil Mcilhagga	06-Apr-21	633	Paul Reay	07-Apr-21
585	Neil Paul Brooks	06-Apr-21	634	Paul Reddington	06-Apr-21
586	Neil Stewart	06-Apr-21	635	Paul Rushton	07-Apr-21
587	Neil Storey	07-Apr-21	636	Paul S Bristow	06-Apr-21
588	Neil Turner	06-Apr-21	637	Paul Stowell	06-Apr-21
589	Neil Whittle	06-Apr-21	638	Paul Wharton	06-Apr-21
590	Neville Higgins	07-Apr-21	639	Paul Williams	07-Apr-21
591	Nicholas Oliver Metcalfe	06-Apr-21	640	Paul Worrall	07-Apr-21
592	Nick Bairstow	07-Apr-21	641	Pe Dickinson	06-Apr-21
593	Nick Eyre	06-Apr-21	642	Peter Ashmore	06-Apr-21
594	Nick Fesmer	06-Apr-21	643	Peter Astbury	06-Apr-21
595	Niels Winder	07-Apr-21	644	Peter Christley	06-Apr-21
596	Nigel Barnes	06-Apr-21	645	Peter Coddington	06-Apr-21
597	Nigel Holden	07-Apr-21	646	Peter Collier	07-Apr-21
598	Nigel Margerison	07-Apr-21	647	Peter Danson	06-Apr-21
599	Nigel Tucker	06-Apr-21	648	Peter Duerden	07-Apr-21
600	Nigel Varty	07-Apr-21	649	Peter Emerson	07-Apr-21
601	Norman Watson	07-Apr-21	650	Peter Evans	06-Apr-21
602	P Johnston	06-Apr-21	651	Peter Foster	07-Apr-21
603	P Just Pearce	06-Apr-21	652	Peter Francis Ladyman	08-Apr-21
604	P Morrison	07-Apr-21	653	Peter Henery	07-Apr-21
605	Pat Seals	06-Apr-21	654	Peter Henry Lawn	08-Apr-21
606	Patrick Mcdonald	06-Apr-21	655	Peter Hunt	06-Apr-21
607	Paul Bell	06-Apr-21	656	Peter Johnson	07-Apr-21
608	Paul Brown	06-Apr-21	657	Peter Kenyon	09-Apr-21
609	Paul Churchill	06-Apr-21	658	Peter Knox	06-Apr-21
610	Paul Ciaputa	07-Apr-21	659	Peter Laws	07-Apr-21
611	Paul Cooper	08-Apr-21	660	Peter Mcandrew	06-Apr-21
612	Paul Cross	07-Apr-21	661	Peter Miller	07-Apr-21
613	Paul Davis	07-Apr-21	662	Peter Monk	06-Apr-21
614	Paul Douras	09-Apr-21	663	Peter Nickson	06-Apr-21
615	Paul Ellams	06-Apr-21	664	Peter Nixon	06-Apr-21
616	Paul Fellows	06-Apr-21	665	Peter Oldham	06-Apr-21
617	Paul Fox	06-Apr-21	666	Peter R Owen Owen	06-Apr-21
618	Paul Franklin	06-Apr-21	667	Peter Rigby	06-Apr-21
619	Paul G Burge	06-Apr-21	668	Peter Robinson	07-Apr-21
620	Paul Harris	06-Apr-21	669	Peter S Monaghan	06-Apr-21
621	Paul Heavyside	06-Apr-21	670	Peter St John	07-Apr-21
622	Paul Holloway	07-Apr-21	671	Peter Tattersall E6702	09-Apr-21
623	Paul Jones	07-Apr-21	672	Peter Thomas	06-Apr-21
624	Paul Kittson	06-Apr-21	673	Peter Tomlinson	08-Apr-21
625	Paul Llewellyn	07-Apr-21	674	Peter Wellock	07-Apr-21
626	Paul Mallen	02-Apr-21	675	Peter Wood	06-Apr-21
627	Paul Morgan	07-Apr-21	676	Peter.Gilman	06-Apr-21
628	Paul Morris	06-Apr-21	677	Phil Cordrey	07-Apr-21
629	Paul Moscrop	07-Apr-21	678	Phil Godson	06-Apr-21
630	Paul Needham	07-Apr-21	679	Phil Hatton	06-Apr-21
631	Paul Nevins	06-Apr-21	680	Phil Hatton	10-Apr-21

681	Phil Johnson	07-Apr-21	730	Robert Kelly	06-Apr-21
682	Phil Marland	07-Apr-21	731	Robert Lucey	06-Apr-21
683	Phil Plant	05-Apr-21	732	Robert Powell	08-Apr-21
684	Phil Powell	06-Apr-21	733	Robert Ranby	06-Apr-21
685	Philip Andrew Hartwell	07-Apr-21	734	Robert Reginald Stoker	07-Apr-21
686	Philip Benting	07-Apr-21	735	Robert Simms	07-Apr-21
687	Philip Bradbury	07-Apr-21	736	Rodney Kaye	09-Apr-21
688	Philip Burgess	07-Apr-21	737	Roger Aston	07-Apr-21
689	Philip Clutton	07-Apr-21	738	Roger Bisby	06-Apr-21
690	Philip Cunningham	06-Apr-21	739	Roger Chandler	06-Apr-21
691	Philip Hampson	06-Apr-21	740	Roger Phillips	06-Apr-21
692	Philip Hartwell	05-Apr-21	741	Roger Taylor	06-Apr-21
693	Philip Rickman	06-Apr-21	742	Roger Walker	06-Apr-21
694	Philip Trifonoff	06-Apr-21	743	Roger Waterhouse	04-Apr-21
695	Philip Whalley	07-Apr-21	744	Roman Mikolajewicz	06-Apr-21
696	Philip Whittaker	06-Apr-21	745	Ron Ball	07-Apr-21
697	Professor Keith Hartley	06-Apr-21	746	Ron Grabner	06-Apr-21
698	R B Taylor	07-Apr-21	747	Ron Weston	06-Apr-21
699	R Gardiner	06-Apr-21	748	Ronald Gray	08-Apr-21
700	Ray Ellison	06-Apr-21	749	Rosemary Eardley	08-Apr-21
701	Ray Farrell	06-Apr-21	750	Ross Sheppard	07-Apr-21
702	Ray Martindale	07-Apr-21	751	Ross Sutton	06-Apr-21
703	Raymond Baxter.	06-Apr-21	752	Rowland Dudley	06-Apr-21
704	Reg Holdcroft	06-Apr-21	753	Roy Evans	07-Apr-21
705	Reinier Vrijenhoek	06-Apr-21	754	Roy Groom	07-Apr-21
706	Reuben Woodford	04-Apr-21	755	Roy Naylor	07-Apr-21
707	Richard Bates	07-Apr-21	756	Russell Dilks	04-Apr-21
708	Richard Cheetham	04-Apr-21	757	Russell Edwards	06-Apr-21
709	Richard Creasey	06-Apr-21	758	Ryan Stanford	07-Apr-21
710	Richard Davies	06-Apr-21	759	S Collinge	07-Apr-21
711	Richard Fairbanks	06-Apr-21	760	Sam Heath	07-Apr-21
712	Richard Houghton	08-Apr-21	761	Samcskimming1@Gmail.Com	07-Apr-21
713	Richard Jones	06-Apr-21	762	Samuel Vodos	07-Apr-21
714	Richard Sheard	07-Apr-21	763	Sean Chambers	08-Apr-21
715	Richard Smith	07-Apr-21	764	Sean Whiston	07-Apr-21
716	Richard Stokes	07-Apr-21	765	Shamey	04-Apr-21
717	Richard Walton	07-Apr-21	766	Shamey Lee	07-Apr-21
718	Richard Woodhouse	06-Apr-21	767	Shane Bilson	06-Apr-21
719	Rob Crutchley	06-Apr-21	768	Shaun Robinson	06-Apr-21
720	Rob Hargreaves	07-Apr-21	769	Simon Davies	06-Apr-21
721	Robert Baker	08-Apr-21	770	Simon Dowson	07-Apr-21
722	Robert Barton	06-Apr-21	771	Simon Harris	06-Apr-21
723	Robert Blackwell	06-Apr-21	772	Simon John Ivor Amos	05-Apr-21
724	Robert Boyce	07-Apr-21	773	Simon Taylor	10-Apr-21
725	Robert Cartledge	08-Apr-21	774	Simon Todd	06-Apr-21
726	Robert Day	06-Apr-21	775	Simon Wood	06-Apr-21
727	Robert Gillies	07-Apr-21	776	Stan Martin	07-Apr-21
728	Robert Hackney	06-Apr-21	777	Stella Somerville	07-Apr-21
729	Robert Harbin	09-Apr-21	778	Stephen Ainscow	07-Apr-21

779	Stephen Barnes	06-Apr-21	823	Stuart Thompson	06-Apr-21
780	Stephen Booth	07-Apr-21	824	Stuart Vinter	06-Apr-21
781	Stephen Cotton	06-Apr-21	825	Sue Chapman	06-Apr-21
782	Stephen Edge	06-Apr-21	826	T Carruthers	07-Apr-21
783	Stephen Fogg	06-Apr-21	827	T.Hyde	06-Apr-21
784	Stephen Halsall	08-Apr-21	828	Terence Davies	06-Apr-21
785	Stephen Hayes	06-Apr-21	829	Terry Boulton	03-Apr-21
786	Stephen K Lomax	07-Apr-21	830	Tim Bacon	08-Apr-21
787	Stephen K Makin	06-Apr-21	831	Tim Mander	06-Apr-21
788	Stephen Maxfield	07-Apr-21	832	Tim Matyus	06-Apr-21
789	Stephen Morris	06-Apr-21	833	Timothy Skinner	09-Apr-21
790	Stephen Newell	07-Apr-21	834	Toby Fletcher	07-Apr-21
791	Stephen Perry	06-Apr-21	835	Tom	05-Apr-21
792	Stephen Pritchard	06-Apr-21	836	Tom Bond	06-Apr-21
793	Stephen Ratcliffe	07-Apr-21	837	Tom Davies	06-Apr-21
794	Stephen Somerville	07-Apr-21	838	Tom Kelly	06-Apr-21
795	Stephen W. Bales	07-Apr-21	839	Tom Pritchard	07-Apr-21
796	Stephen Watson	07-Apr-21	840	Tom Rigby	07-Apr-21
797	Stephen White	07-Apr-21	841	Tom Seward	04-Apr-21
798	Stephen Whitfield	07-Apr-21	842	Tony Bradbury	06-Apr-21
799	Stev Stone	06-Apr-21	843	Tony Robinson	06-Apr-21
800	Steve Abbott	06-Apr-21	844	Tony Rose	07-Apr-21
801	Steve Dunn	06-Apr-21	845	Tony Ryan	06-Apr-21
802	Steve Gilbey	06-Apr-21	846	Tony Shepherd	07-Apr-21
803	Steve Jones	06-Apr-21	847	Tony Spencer	06-Apr-21
804	Steve Marsden	06-Apr-21	848	Tony Young	06-Apr-21
805	Steve Mulligan	06-Apr-21	849	Trevor Holloway	06-Apr-21
806	Steve Oliver	06-Apr-21	850	Trevor Kneebone	06-Apr-21
807	Steve Street	06-Apr-21	851	Trevor Mcvittie	06-Apr-21
808	Steven Andrews	06-Apr-21	852	Trevor Teasdale	07-Apr-21
809	Steven Ashworth	07-Apr-21	853	Vic Randle	07-Apr-21
810	Steven Brown	07-Apr-21	854	Victoria Aleixos	06-Apr-21
811	Steven Hiatt	07-Apr-21	855	Vince Bowen	08-Apr-21
812	Steven Neil Haddow	07-Apr-21	856	Vince Green	08-Apr-21
813	Stewart Horn	07-Apr-21	857	Vince Green	08-Apr-21
814	Stewart Jones	06-Apr-21	858	William Black	07-Apr-21
815	Stewart Watson	06-Apr-21	859	William Candeland	06-Apr-21
816	Stuart Dillon	06-Apr-21	860	William Clarkson	07-Apr-21
817	Stuart Hall	06-Apr-21	861	William Hannan	06-Apr-21
818	Stuart Hayhurst	06-Apr-21	862	William John Wallbank	06-Apr-21
819	Stuart Kelsall	07-Apr-21	863	William Roberts	06-Apr-21
820	Stuart Maddocks	06-Apr-21	864	William Teague	06-Apr-21
821	Stuart Pugh	06-Apr-21	865	Zl Drewnicki	06-Apr-21
822	Stuart Roberts	07-Apr-21			

ENDNOTES

- i. As stated in CNL15.1469_UK England and Wales Annual Progress Report on Actions taken under the Implementation Plan for the Calendar Year 2020 Section ; and in Action F2 1.Quality assurance of the current assessment process
- ii. 2. Review of methods for the setting of Conservation Limits 3. Improved adult and juvenile monitoring processes
- iii. 4. Consideration of statistical compliance procedures 5. Improving the Decision Structure.
- iv. 6. Improved reporting requirements to keep stakeholders engaged and informed Where we note little positive outcome.
- v. Lessons to be learned from Wales Appendix 1
- vi. Restriction of liberties requires a particularly high threshold of justification. See Appendix 2 on why that threshold is not reached in present situation, due to distorted Environment Agency stock calculations and suboptimal risk modelling including use of a Bayesian methodology with minimal information content and statistical evidence of its robustness.
- vii. <u>Severn anglers face ban on taking salmon home | News | The Times</u> "poachers could be given free rein on the River Severn if law-abiding fishermen are driven away by plans to ban them form taking home any of their catch"
- viii. Lessons to be learnt from Wales, Appendix 1
- ix. EA claims that anglers can go coarse fishing instead without detriment show a startling lack of appreciation of differential branches of the sport.
- x. Claims made verbally by EA management that coarse anglers will patrol the banks for the EA during the coarse close season when the main MSW spring run occurs appear wishful thinking to cover up lack adequate staffing level for enforcement.
- xi. Claims made verbally by EA management that coarse anglers will patrol the banks for the EA during the coarse close season when the main MSW spring run occurs are self-serving wishful thinking to cover up lack adequate staffing level for enforcement. Equally worrying is the idea that coarse anglers could provide eyes and ears on the upper reaches and main spawning areas where there is little or no coarse fishing.
- xii. The EA has refused to provide a methodology for estimating poaching loss, following the deficiency in NRW 'technical' case. See by contrast NASCO p6 in. <u>https://nasco.int/wp-content/uploads/2020/02/IP1913rev_IP_EU-UK-England-and-Wales.pdf</u>
- xiii. This is problematic as salmon poaching has always been recognised as a problem on the Severn system particularly on the Teme and the upper reaches. See River Severn Salmon Action Plan consultative document 1998.
- xiv. Voluntary bailiffing to reduce EA costs is part of a well-funded partnership working agreement with Angling Trust, the migratory fish dimension of which will be fatally undermined by this byelaw being imposed without community consent.
- xv. This would also help heal the wounds caused in Wales by NRW hiring a barrister to "aggressively" question and undermine anglers who have displayed decades-long partnership working on habitat restoration and pollution reporting, increasingly necessary to support the cutback-led "intelligence-based" EA/NRW enforcement approach.
- xvi. As is evident from the selection bias (only 1 option mentioned) and confirmation bias (assertive questions re agreement) in the online and paper consultation document
- xvii. See unanswered point 5 in SFG letter of /3/21 to Kay Champion, with incomplete reply of 21/3/21

xviii. See appendix 1

- xix. SFG trusts EA management will not wish to undermine Heidi Stone's enthusiastic wellbeing promotion:
- xx. "we're seeing a true revival for the sport as people recognise all it has to offer. As lockdown restrictions have eased there has been a boom in licence sales as now, more than ever, people have a desire to get outdoors and escape their daily stresses. Fishing is a sport that can be done by a person of any age or ability and it provides a great opportunity for families to try something new during the school holidays."
- xxi. Indirect discrimination occurs when the introduction of a policy, criteria or practice results in less favourable treatment to a group with protected characteristics. In this case only allowing spinning and fly fishing, which are the more active forms of angling, would result in less favourable treatment of those older or disabled anglers who are not capable of that level of activity and can only fish with bait. Both age and disability are protected characteristics under the Equality Act. Furthermore, failure to offer an exemption to any bait fishing ban to anglers with a disability would almost certainly amount to a failure to make reasonable adjustments. The only defence available to the Agency to the claim of indirect discrimination would be that the bait ban is a 'proportionate means of achieving a legitimate aim'. It is difficult to see how the level of salmon mortality involved (especially given C&R the mitigating measures available such as use of circle hooks) would balance the less favourable treatment and impact on individual wellbeing of removing salmon angling as a pursuit for a significant number of people. Whether or not there is any defence against the point of failure to make reasonable adjustment is a moot point. If an Equality Impact Assessment (EIA) had been carried out these issues would have been highlighted. For guidance on the use of EIAs to eliminate discrimination by public bodies see The public sector equality duty and equality impact assessments, House of Commons Library, July 2020 https://commonslibrary.parliament.uk/research-briefings/sn06591/
- xxii. ^{xv} begun with highly contested NRW board meeting 18/1/18 chaired by Diane McCrae, at which a one-sided officers' paper to the board led to motion being determined by chair without a vote. Permission to address the board on the subject by angling representatives was refused. One board member even apologised for the decision! source John Eardley
- xxiii. See also Angling Trust: "We would urge the EA to learn from this action in Wales and work with local angling groups to achieve a beneficial outcome"
- xxiv. xvian impression compounded by leaving an agenda item about the impact of the Welsh byelaw, probably the biggest change for decades, off the Welsh Fisheries Forum agenda afterwards, to avoid documentation of the obvious wide negative impact to sidestep accountability?
- xxv. xviihe sudden appearance of an non-consulted NRW byelaw just before the start of the EA Severn byelaw consultation period reinforces the impression of precipitate action without including substantive stakeholder engagement. xviiiSee Appendix 2 Sections VI and VII
- vvvi xixSee Appendix 2 Section III
- xxvi. xixSee Appendix 2 Section III
- xxvii. xxThe sequence of this influential recalculation has never been made clear, but was referred to in meeting 1/4/21 without full explanation
- xxviii. What is the evidence base to justify this transferral?

xxix.	See Appendix 2 Section VI			
XXX.	xiiThis starting point was explicitly confirmed by EA staff involved in the review, in their meeting with the SFG on 1/4/21.			
xxxi.	See appendix 1 - exhaustive analysis of the unidirectional nature of revisions – an indirect indicator of underlying predetermination?			
xxxii.	xxiv Over a 10 year period 3,500 salmon were aged weighed and sexed in a project involving Fisheries officers and the Lydney Park			
	putcher fishery in the Severn estuary.			
xxxiii.	Given that the EA recognise that the spring byelaws have depressed the Severn spring rod catch by 58%, and that does not reflect a			
	reduced run of spring fish (EA Spring Salmon Byelaw review Appendix 1: A SUMMARY OF THE STATUS OF SPRING SALMON			
xxxiv.	STOCKS IN ENGLAND AND WALES AT APRIL 2007) and given that the majority of larger fish run early and are only available to the rod			
	fishery during this period of reduced effort it is difficult to understand the rationale for taking angler estimates of weights over a huge			
	systematic scientific study of this scale. The age/weight tables were published in the River Severn Salmon Action Plan Consultative			
	document 1998.			
XXXV.				
XXXVİ.	See Appendix 2 section IV			
xxxvii.	See Appendix 2 Section 1 for an analysis of Exploitation rates.			
XXXVIII.	We would be interested to see any EA evidence that shows this to be a temporary reduction, justifying optimism the impact of proposed			
	byelaw will not be permanently damaging to angler participation. We trust Detra will request such data from the EA.			
XXXIX.	Evidence base to justify this transferral?			
XI.	Separate letter from NWFCC refers. Depended by refined levinger as direct reportants beard from EA key by leving the restort on Severn tributany. Further datail evolution			
XII.	Recorded by retired lawyer as direct reportage heard from EA key byelaw character on Severn tributary. Further detail available.			
XIII.	Email 24/2/21 to Tamara Finkeistein and Victoria Prentis. Clearly a Dena evaluation father than EA Internal assessment is			
vliii	See Appendix 2			
XIIII. Vliv	Oper Appendix 2 Appling Trust: "The experience in Wales with regard to colmon management in Waleh rivers followed an approach bacad an "ten			
XIIV.	down" legal measures, requiring monitoring and enforcement from a beavily underfunded regulator. The lack of engagement with anglers			
	has been problematic and is claimed to have led to a series of unintended consequences including an increase in the posching of salmon			
	We would urge the FA to learn from this action in Wales and work with local angling groups to achieve a beneficial outcome, a point we			
	have advocated in previous consultations: Angling Trust Calls for Voluntary Approach to Regulating Salmon and Sea Trout Angling			
	(nemisvs3.uk.com)"			
xlv.	River Severn Net Limitation Order and Byelaws 2021 - Environment Agency - Citizen Space (environment-agency.gov.uk)			
xlvi.	New National Angling Strategy aims to get more people fishing - GOV.UK (www.gov.uk)			
xlvii.	Very recently restarted on the Teme for unknown reason			
xlviii.	Is Environment Agency taking the easy way out by targetting recreational salmon anglers on the R Severn while neglecting to			
	remedy the major factors which impact severely on salmon stocks - a Freedom of Information request to Environment Agency -			
	<u>WhatDoTheyKnow</u>			
xlix.	River Severn Salmon Action Plan – consultation document 1998 p 9			
I.	Op cit p 4 'As water temperatures rise worms increasingly become the main bait'			
li.	Evidence provided by Charles Crundwell for the EA in the Mott judicial review. Spreadsheet entitled Severn-egg-corrected-12			
lii.	http://severnsalmon.blogspot.com/2012/02/how-industry-shaped-severn-salmon-runs.html			
liii.	http://severnsalmon.blogspot.com/2012/02/severn-salmon-runs-in-19th-century.html			
liv	Lion stock accessment reports 2010 to 2020			